Efectos oscilatorios de tipo óptico en la conductividad terahercios del grafeno

Autores/as

Ricardo Vega Monroy
Universidad del Atlántico
Guillermo Salazar Cohen
Universidad del Atlántico

Palabras clave:

Espectro de energía, Oscilaciones ópticas, conductividad óptica

Sinopsis

En años recientes, después que fue posible separar la capa de grafeno de una estructura grafítica, un gran número de trabajos ha sido dedicado a estudiar este sistema debido a las propiedades no peculiares encontradas en este material [28, 29, 27, 6, 9, 2, 19, 12, 10, 13, 11, 40, 39, 8, 18]. La estructura característica del grafeno, en la cual las bandas de valencia y de conducción se tocan en dos puntos no equivalentes en la esquina de la primera zona de Brillouin, como consecuencia de su red en forma de pánel de abejas, hace a este material ópticamente transparente al igual que altamente buen conductor [26, 4] (ver Figura 1.1). Por lo anterior, las excitaciones de baja energía en grafeno poseen un espectro de dispersión lineal similar a los fotones en la radiación electromagnética, lo cual afecta de manera radical las propiedades de transporte en este sistema. En particular, las propiedades ópticas y eléctricas en grafeno bajo la acción de campos alternos intensos hansido objeto de muchas investigaciones, encontrandose que la radiación ac cambia de manera sorpresiva la estructura energética y, consecuentemente, la densidad de estados de este sistema [7, 25]. En este sentido, una variedad de fenómenos han sido predichos para ser observados en grafeno, como por ejemplo el efecto Hall fotovoltáico [30], las corriente valle-polarizadas [33], etc..

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Y. Aharonov and J. Anandan. Phase change during a cyclic quantum evolution. Phys. Rev. Lett., 58:1593, 1987.

Antonio Di Bartolomeo, Giuseppe Luongo, Filippo Giubileo, Ni- cola Funicello, Gang Niu, Thomas Schroeder, Marco Lisker, and Grzegorz Lupina. Hybrid graphene/silicon schottky photodiode with intrinsic gating effect. 2D Mater., 4:025075, 2017.

C. W. J. Beenakker. Colloquium: Andreev reflection and klein tunneling in graphene. Rev. Mod. Phys., 80:1337, 2008.

K. Bolotin and et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 142:351, 2008.

J. Buron and et al. Graphene conductance uniformity mapping. Nano Lett., 12:5074, 2012.

J. Buron and et al. Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe. Nano Lett., 14:6348, 2014. 7. Thierry Champel and Serge Florens. High magnetic field theory for the local density of states in graphene with smooth arbitrary potential landscapes. Phys. Rev. B, 82:045421, 2010.

H.J. Choi and et al. Control of terahertz nonlinear transmission with electrically gated graphene metadevices. Sci. Rep., 7:42833, 2017.

Hamed Dalir, Yang Xia, Yuan Wang, and Xiang Zhang. Athermal broadband graphene optical modulator with 35 ghz speed. ACS Photonics, 3(9):1564, 2016.

Guangsheng Deng, Tianyu Xia, Jun Yang, and Zhiping Yin. A graphene-based broadband terahertz metamaterial modulator. Journal of Electromagnetic Waves and Applications, 31:381–385, 2017.

J. Ding and et al. Tuneable complementary metamaterial struc- tures based on graphene for single and multiple transparency win- dows. Sci. Rep., 4:6128, 2014.

Maixia Fu and et al. Efficient terahertz modulator based on pho- toexcited graphene. Optical Materials, 66:381–385, 2017.

X.-J. He and et al. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene. J. Appl. Phys., 115:17B903, 2014.

A. Iurov, G. Gumbs, O. Roslyak, and D. Huang. Anomalous photon-assisted tunneling in graphene. J. Phys.: Condens. Mat- ter, 24:015303, 2012.

O. Kibis. Metal-insulator transition in graphene induced by cir- cularly polarized photons. Phys. Rev. B, 81:165433, 2010.

O. Kibis. Dissipationless electron transport in photon-dressed nanostructures. Phys. Rev. Lett., 107:106802, 2011.

L.D. Landau and E.M. Lifshits. Statistical Mechanics I. Perga- mon Press, U.K., 3 edition, 1980.

Q. Li and et al. A graphene–silicon hybrid diode for terahertz waves. Nat. Commun, 6:7082, 2015.

Quan Li and et al. Dual control of active graphene–silicon hybrid metamaterial devices. Carbon, 90:146, 2015.

G. Mahan. Many-Particle Physics. Plenum Press, New York, 2 edition, 1990.

Z. Mics and et al. Thermodynamic picture of ultrafast charge transport in graphene. Nat. Commun., 6:7655, 2015.

E. G. Mishchenko. Effect of electron-electron interactions on the conductivity of clean graphene. Phys. Rev. Lett., 98:216801, 2007.

R. Vega Monroy and G. Salazar Cohen. Photon-induced quantum oscillations of the terahertz conductivity in graphene. Nano Lett., 16:6797, 2016.

R. Vega Monroy and K. Arrieta Carbon ó. Quantum optical osci- llations of the fermi level in a graphene-based schottky junction. The European Physical Journal B, 91:232, 2018.

Marcin Mucha-Kruczzynski, Oleksiy Kushuba, and Vladimir Fal’ko. Spectral features due to inter-landau-level transitions in the raman spectrum of bilayer graphene. Phys. Rev. B, 82:045405, 2010.

R. R. Nair and et al. Fine structure constant defines visual trans- parency of graphene. Science, 320:1308, 2008.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys., 81:109, 2009.

K.S. Novoselov and et al. Electric field effect in atomically thin carbon films. Science, 306:666, 2004.

K.S. Novoselov and et al. Two-dimensional gas of massless dirac fermions in graphene. Nature, 438:197, 2005.

T. Oka and H. Aoki. Photovoltaic hall effect in graphene. Phys. Rev. B, 79:081406(R), 2009.

N.M.R. Peres and Eduardo V. Castro. Algebraic solution of a graphene layer in transverse electric and perpendicular magnetic fields. J. Phys.: Condens. Matter, 19:406231, 2007.

H. Razavipour and et al. High-field response of gated graphene at terahertz frequencies. Phys. Rev. B, 92:245421, 2015.

O. Roslyak, G. Gumbs, and S. Mukamel. Trapping photon- dressed dirac electrons in a quantum dot studied by coherent two dimensional photon echo spectroscopy. J. Chem. Phys., 136:194106, 2012.

S. G. Sharapov, V. P. Gusynin, and H. Beck. Magnetic oscillations in planar systems with the dirac-like spectrum of quasiparticle excitations. Phys. Rev. B, 69:075104, 2004.

R. Krishna Kumar et al. High-temperature quantum oscillations caused by recurring bloch states in graphene superlattices. Scien- ce, 14:181, 2017.

R. Vega-Monroy. Bose-einstein condensation of paired photon- dressed electrons in graphene. Physica E, 63:134, 2014.

R. Vega-Monroy, O. Martinez-Castro, and G. Salazar-Cohen. Frequency-driven quantum oscillations in a graphene layer under circularly polarized ac fields. Phys. Lett. A, 379:1169, 2015.

R. Vega-Monroy and C. Mera-Acosta. Magneto-optical franz- keldysh effect in graphene. Phys. Rev. B, 85:235442, 2012.

L. Wu and et al. A new ba(0.6)sr(0.4)tio(3) - silicon hybrid me- tamaterial device in terahertz regime. Small, 12:2616, 2016.

R. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, and H.G. Xing. A new class of electrically tunable metamaterial terahertz modu- lators. Opt. Express, 20(27):28664, 2012.

Weidong Zhang, Phi H. Q. Pham, Elliott R. Brown, , and Peter J. Burke. Ac conductivity parameters of graphene derived from thz etalon transmittance. Nanoscale, 6:13895, 2014.

Descargas

Publicado

junio 1, 2018

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Detalles sobre esta monografía

ISBN-13 (15)

978-958-5525-48-1

Fecha de publicación (01)

2018