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The spectrum of the power graph of a cyclic
p−group and some characteristics of an orthogonal

graph in an indefinite metric space
EIDER ALDANA, CARLOS ADOLFO ARAUJO, AND JUAN DAVID BARAJAS

Abstract. In this paper, among other results we find the spectrum of the power graph
of a finite cyclic p−group, we show that the spectrum of the combinatorial Laplacian of
the power graph of a finite group P (G) has exactly n − 1 positive eigenvalues being n
the order of the group G, for this the basic concepts of group theory are included, certain
theorems that support this study, the concept of graph, the essential results of graph
theory, algebraic theory of graph and finally the concept of power graph of a finite group,
which was presented for the first time in [1]. Finally, a characterization of the orthogonal
graph of an indefinite metric space is made, which was introduced by the researchers in
this article.
Keywords: Finite groups, graphs, power graph, adjacency matrix, Laplacian matrix,
spectrum of a graph, isomorphic graphs, algebraic connectivity, space with indefinite
metric, orthogonal graph

Resumen. En este trabajo, entre otros resultados encontramos el espectro del grafo
potencia de un p−grupo cíclico finito, mostramos que el espectro del Laplaciano combina-
torio del grafo potencia de un grupo finito P (G) tiene exactamente n− 1 valores propios
positivos siendo n el orden del grupo G, para ello se incluyen los conceptos básicos de
la teoría de grupos, ciertos teoremas que sustentan este estudio, el concepto de grafo,
los resultados esenciales de la teoría de grafos, teoría algebraica de grafos y finalmente el
concepto de grafo potencia de un grupo finito, que fue presentado por primera vez en [1].
Finalmente, se realiza una caracterización del grafo ortogonal de un espacio de métrica
indefinida, la cual fue introducida por los investigadores en este artículo. Grupos finitos,
grafos, grafo de potencias, matriz de adyacencia, matriz laplaciana, espectro de un grafo,
grafos isomorfos, conectividad algebraica, espacio con métrica indefinida, grafo ortogonal

1. Introduction

By a graph, we understand a triple (V,E, ϕ), such that V,E are finite sets, V ∩E = ∅, V ̸= ∅,
y ϕ : E →

(
V
2

)
∪ V the elements of V = V (G) y E = E(G) are called vertices and edges of

G, respectively. Furthermore, we assume that H is a subgraph of G if each vertex of H is a
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vertex of G and each edge of H is an edge of G, a complete graph is a graph where each pair
of different vertices are connected by an edge. A complete graph of n vertices has n(n− 1)/2
edges and is denoted Kn. A graph G is said to be connected if for each pair of vertices of G
there is at least one path that joins them. A connected graph that does not have a cycle is
called a tree. A set of two or more trees is called a forest. A spanning tree is a subgraph of G
that is a tree whose vertices are all the vertices of graph G.

Currently, the study of the graphs that can be generated through groups has increased
exponentially, as are the cases of the power graph of a finite group defined in [1], the center
graph of a group [2], the n−th commutator graph of a finite group [3] and Prime Coprime
Graph of a Finite Group [4]. Chakrabarty defines the power graph P (G) as the graph whose
set of vertices are the elements of the finite group G, namely V (P (G)) = G, and two vertices
are adjacent if and only if one is the power of the other. In addition, the algebraic theory of
graphs is a branch of mathematics that is responsible for studying the properties of graphs
through linear algebra, because to each graph H we can associate different matrices, such as
the adjacency matrix of size n× n denoted A (H) and defined by:

aij =

{
1, if i is adjacent to j

0, if i is not adjacent to j

being i, j vertices of the graph H, the combinatorial Laplacian matrix of size n × n denoted
L(H) and defined by:

lij =


di, if i = j

−1, if i is adjacent to j

0, in another case.
where di is the degree of the i-th vertex, and the normalized laplacian matrix L(H) defined by:

Lij =


1, if i = j

−1√
didj

, if i is adjacent to j

0, in another case.

Based on this we determine the eigenvalues of the matrices A(P (G)), L(P (G)), and L(P (G)),
being G a finite cyclic p−group, we also prove that the spectrum of the combinatorial laplacian
matrix of the power graph P (G) has at least one positive eigenvalue and finally we propose the
definition of the orthogonal graph of an indefinite metric space, showing some characteristics
of this graph.

2. The power graph of a finite group

We start this section by recalling the concept of power graph and some relevant results of
this theory, which serve as a reference for the results of this research work.

Theorem 2.1. [13] Let G be a cyclic group of order n, then for each positive divisor d of n
there is an unique subgroup of order d.

Theorem 2.2 (Cauchy’s theorem). [12] Let G be a finite group of order n such that n is
divisible by a prime p. Then G has an element of order p and therefore a subgroup of order p.

Theorem 2.3. [5] The group Un is cyclical if and only if n = 1, 2, 4, pk or 2pk, where p is
an odd prime, with k ∈ N.

Theorem 2.4. [5] If a ≥ 2 and am + 1 is prime, then a is even and m is a power of 2.

Theorem 2.5. [6] If the eigenvalues of two graphs do not match, then the graphs are not
isomorphic.
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Theorem 2.6. [6] Let G be a graph, and 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 be the eigenvalues of the
combinatorial laplacian of G. Then the number of spanning trees of G is given by

λ1λ2 · · ·λn−1

n
.

Theorem 2.7. [7] Let G be a graph, L(G) the combinatorial laplacian of the graph G and
0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L(G). The graph G is connected if and only if
λ2 > 0.

The result of the theorem above suggests an appropriate name for the eigenvalue λ2 of L(G).
It is called the algebraic connectivity of G. From now on, it will be denoted by a(G). More
information about algebraic connectivity can be found in [7], [9] and [8]. In [9] we find previous
and new results on the algebraic connectivity of graphs, giving a classification to the bounds of
algebraic connectivity in function of other invariants of the graph, as well as the applications
of the eigenvector related to algebraic connectivity, known as the Fiedler vector.

Proposition 2.1. [11] If Kn is the complete graph of n vertices, then Spec(Kn) =

(
−1 n− 1

n− 1 1

)
,

for all n ∈ N.

Proposition 2.2. [11] The eigenvalues of the combinatorial Laplacian matrix associated with
the complete graph Kn are given by λ1 = 0 and λ2 = λ3 = · · · = λn−1 = n, for all n ∈ N.

Proposition 2.3. [11] If G1, G2 are finite groups, such that G1
∼= G2, then P (G1) and P (G2)

are isomorphic graphs.

Proposition 2.4. [1] Let S be a semigroup. Then P (S) is complete if and only if the cyclic
subsemigroups of S are ordered linearly with respect to the usual containing relation (that is,
for any two cyclic subsemigroups S1, S2 de S, S1 ⊆ S2 o S2 ⊆ S1).

Theorem 2.8. [1] Let G be a finite group, the graph P (G) is complete if and only if G is a
cyclic group of order 1 or pm, for some prime number p and a positive integer m.

Theorem 2.9. [1] The graph P (Un) is complete if and only if n takes any of the following
values n = 1, 2, 4, p, 2p, where p is a Fermat prime. That is, p = 22

m
+ 1, for some integer

m ≥ 0.

3. Space with indefinite metric

Definition 3.1. Let V be a vector space over the field of complex numbers C, an inner product
in V is a function Q : V × V −→ C such that:

(1) Q(x+ y, z) = Q(x, z) +Q(y, z)
(2) Q(αx, y) = α Q(x, y)

(3) Q(x, y) = Q(y, x) for all x, y, z ∈ V and α ∈ C.
If the inner product satisfies (1) and (2) it is called hermitian sesquilinear form if it also satisfies
(3) it is said to be hermitian symmetric.

Many authors instead of using the notation Q(x, y) write ⟨x, y⟩ or (x, y) or [x, y] in our theory
we we will reserve the notation ⟨x, y⟩ for inner products in Hilbert spaces. Note that Q(x, x) is a
real number for this reason it can be a positive, negative or zero number. If a Q− metric defined
in a vector space V takes positive and negative values, we will call the pair (V ,Q) Space with
indefinite metric or Space with indefinite product, for convenience we will write Q(x, y) = [x, y].
A space with undefined inner product will be denoted by (V , [·, ·]) instead of (V ,Q).

Proposition 3.1. [10] If V is a space with indefinite inner product, then the polarization
property is satisfied, that is, for all x, y ∈ V we have

[x, y] =
1

4
[x+ y, x+ y]− 1

4
[x− y, x− y] +

i

4
[x+ iy, x+ iy]− i

4
[x− iy, x− iy].
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Since [x, x] ∈ R for all x ∈ V , then the trichotomy property of real numbers motivates the
following definition:

Definition 3.2. Given a vector x in the space (V , [· , · ]) with inner product it is said that:
(1) x is positive, if [x, x] > 0;
(2) x is negative, if [x, x] < 0;
(3) x is neutral, if [x, x] = 0.

Notice that x could be neutral even when x ̸= 0.

Example 3.1. Let’s consider V = R2 with the inner product [·, ·] : R2 × R2 given by:

[(a, b), (c, d)] := ac− bd.

Clearly (1, 1) ̸= (0, 0), but [(1, 1), (1, 1)] = 0.

Thanks to the definition and the previous example we can identify the following sets:

B+ = {x ∈ V : [x, x] ≥ 0};
B++ = {x ∈ V : [x, x] > 0 or x = 0};
B++ = {x ∈ V : [x, x] > 0 or x = 0};
B−− = {x ∈ V : [x, x] < 0 or x = 0};
B0 = {x ∈ V : [x, x] = 0};
B00 = {x ∈ V : [x, x] = 0 and x ̸= 0}.

It can be observed that B0 ̸= ∅, since 0 ∈ B0.

Definition 3.3. An inner product space (V , [·, ·]) it is said to be:
(1) Space with indefinite inner product when it has both positive and negative elements, that

is, there are x, y ∈ V such that [x, x] > 0 and [y, y] < 0.
(2) Space with semi-defined inner product when it is not indefinite.
(3) Space with positive semi-defined inner product when [x, x] ≥ 0, for all x ∈ V .
(4) Space with negative semi-defined inner product when [x, x] ≤ 0, for all x ∈ V .
(5) Space with defined inner product when [x, x] = 0 implies x = 0, for all x ∈ V .
(6) Space with neutral inner product when [x, x] = 0, for all x ∈ V .

Definition 3.4. Let V be a space with inner product and let x, y ∈ V . We say that x, y are
orthogonal vectors when [x, y] = 0 and it is denoted by x[⊥]y.

Definition 3.5. Let V be a space with inner product and let A and B be subsets of V . We say
that A and B are orthogonal sets when a[⊥]b, for all a ∈ A, b ∈ B, and it is denoted by A[⊥]B.

Remark 3.1. If [x, y] = 0, for all y ∈ Y, we will write [x,Y ] = 0.

Definition 3.6. Let (V , [·, ·]) be a space with inner product and E a subset of V . The orthogonal
companion of E, denoted by E[⊥], is the set

E[⊥] = {x ∈ V : [x,E] = 0}.

Proposition 3.2. [11] Let (V , [·, ·]) be a space with indefinite inner product, and E ⊆ V. Then
E[⊥] is vector subspace of V.

4. The spectrum of the power graph of a cyclic p−group

Proposition 4.1. Let G1, G2 be two finite groups. If, G1
∼= G2 then we have that Spec(P (G1)) =

Spec(P (G2)).
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Proof. Let G1, G2 be two isomorphic finite groups, then by the Proposition 2.3 we have that
P (G1) is isomorphic to P (G2). Now, from the Theorem 2.5 it follows that Spec(P (G1)) =
Spec(P (G2)). □

Proposition 4.2. If G is a finite cyclic p−group, then we have

Spec(P (G)) =

(
−1 |G| − 1

|G| − 1 1

)
.

Proof. Let G be a finite cyclic p−group, then |G| = pk, for some k ∈ N and some prime number
p. Then by Theorem 2.8, P (G) is a complete graph, such that P (G) = Kpk . By Proposition
2.1 it follows that,

Spec(P (G)) =

(
−1 pk − 1

pk − 1 1

)
=

(
−1 |G| − 1

|G| − 1 1

)
.

□

Theorem 4.1. If p is a Fermat prime number, then the spectrum of P (Up) and P (U2p) are
given by

Spec(P (Up)) =

(
−1 p− 2
p− 2 1

)
, Spec(P (U2p)) =

(
−1 ϕ(2p)− 1

ϕ(2p)− 1 1

)
.

Proof. Let p be a Fermat prime number, then by the Theorem 2.9 we have that P (Up) and
P (U2p) are complete graphs. Also, |Up| = ϕ(p) = p− 1, therefore P (Up) = Kp−1. Besides, from
Proposition 2.1 we get that

Spec(P (Up)) =

(
−1 p− 2
p− 2 1

)
.

On the other hand, |U2p| = ϕ(2p), hence P (U2p) = Kϕ(2p). Finally, by using Proposition 2.1 it
follows that

Spec(P (U2p)) =

(
−1 ϕ(2p)− 1

ϕ(2p)− 1 1

)
.

□

Corolary 4.1. Let p be a Fermat prime number, then:

(1) Spec(P (U2p)) =

(
−1 1
1 1

)
, if p = 2.

(2) Spec(P (Up)) = Spec(P (U2p)), if p > 2.

Proof. If p = 2, then ϕ(2p) = ϕ(4) = ϕ(22) = 2, so by Theorem 4.1 we have

Spec(P (U2p)) =

(
−1 1
1 1

)
.

On the other hand, if p > 2 then

ϕ(2p) = 2p

(
1− 1

2

)(
1− 1

p

)
= p− 1.

Therefore, by using Theorem 4.1 we obtain that

Spec(P (U2p)) =

(
−1 p− 2
p− 2 1

)
.

Hence, Spec(P (Up)) = Spec(P (U2p)). □

Lemma 4.1. If G is a finite cyclic p−group, then the spectrum of L(P (G)) is given by

Spec(L(P (G))) =

(
0 |G|
1 |G| − 1

)
.
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Proof. Let G be a finite cyclic p−group, then |G| = pk, for some prime p and k ∈ N. Then
P (G) is complete, this is P (G) = kpk . From Proposition 2.2 we have that the eigenvalues of
the combinatorial Laplacian matrix of P (G) are λ0 = 0 and λ1 = λ2 = · · · = λpk−1 = pk = |G|.
So,

Spec(L(P (G))) =

(
0 |G|
1 |G| − 1

)
.

□

Proposition 4.3. If G is a finite cyclic p−group, then the number of expansive trees of P (G)

are |G||G| − 2.

Proof. Let G be a finite cyclic p−group, then |G| = pk, for some k ∈ N and some prime number
p. Then, P (G) = K|G| = Kpk and employing Proposition 2.2 the eigenvalues of the Laplacian
combinatorial matrix of P (G) are λ0 = 0 and λ1 = λ2 = · · · = λpk−1 = pk. Therefore, by
Theorem 2.6, the number of expansive trees of P (G) is given by:

λ1λ2 · · ·λn−1

pk
=

pk · pk · · · pk

pk
=

(
pk
)pk − 1

pk
=

(
pk
)(pk − 2

)
= |G||G| − 2. □

Theorem 4.2. Let G be a finite group such that |G| = n > 1, then L(P (G)) has exactly n− 1
positive eigenvalues.

Proof. Let G = {v1, v2, · · · , vn} = V (P (G)). So, vi = e, for some i ∈ {1, · · · , n}, where e is the
neutral element of G. Then for every vk we have that v|G|

k = vnk = e. Hence, vk is adjacent to e.
So, for each pair of elements of G there is a path that joins them, that is, P (G) is a connected
graph. Thus, from Theorem 2.7 we obtain λ2(L(P (G))) > 0. Given that

λ2(L(P (G))) ≤ λ3(L(P (G))) ≤ · · · ≤ λn(L(P (G))),

then

λ3(L(P (G))) > 0, λ4(L(P (G))) > 0, · · · , λn(L(P (G))) > 0.

Therefore, it is proved that the combinatorial Laplacian of the graph P (G) has exactly n − 1
positive eigenvalues. □

Theorem 4.3. Let G be a finite cyclic p−group, then we have

Spec(L(P (G))) =

 |G| − 2

|G| − 1
2

|G| − | 1

 .

Proof. Let G be a finite cyclic p−group, then |G| = pk, for some prime p and k ∈ N, then P (G)
is complete, that is P (G) = Kpk . The normalized Laplacian matrix associated with the graph
P (G) is given by:

L = D
−1
2 LD

−1
2

=



1 1
pk−1

1
pk−1

· · · 1
pk−1

1
pk−1

1 1
pk−1

· · · 1
pk−1

1
pk−1

1
pk−1

. . . . . . ...
...

... . . . . . . 1
pk−1

1
pk−1

1
pk−1

· · · 1
pk−1

1

.
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The characteristic polynomial associated with L is given by:
|L − λI| = | − (λI − L) |

= (−1)p
k

|λI − L|

= (−1)p
k

∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −1
pk−1

−1
pk−1

· · · −1
pk−1

−1
pk−1

λ− 1 −1
pk−1

· · · −1
pk−1

−1
pk−1

−1
pk−1

. . . . . . ...
...

... . . . . . . −1
pk−1

−1
pk−1

−1
pk−1

· · · −1
pk−1

λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)p

k
(

1
pk−1

)pk

(pk − 1)(λ− 2)
[
(λ− 1)(pk − 1) + 1

]pk−1
.

Hence, if |L − λI| = 0 then:

(−1)p
k

(
1

pk − 1

)pk

(pk − 1)(λ− 2)
[
(λ− 1)(pk − 1) + 1

]pk−1
= 0.

From the equality above, we get that λ = 2 or λ =
pk − 2

pk − 1
, that is, λ = 2 or λ =

|G| − 2

|G| − 1
. Thus,

we can conclude that the normalized Laplacian spectrum Spec(L(P (G))) is given by:

Spec(L(P (G))) =

 |G| − 2

|G| − 1
2

|G| − | 1

 .

□

5. Some characteristics of an orthogonal graph in an indefinite metric space

Definition 5.1. Let (V , [·, ·]) be an indefinite metric space and K ⊆ V, with K ̸= ∅. We define
the orthogonal graph in K, denoted by Ω[⊥](K) as the graph whose set of vertices are elements
of K and two different vertices x, y ∈ K are adjacent if and only if [x, y] = 0. If we have that,
K = V, the graph Ω[⊥](V) is called an orthogonal graph in the indefinite metric space (V , [·, ·]).

Remark 5.1. [11] Let (V , [·, ·]) be a space with semi-defined inner product. For any x ∈ B0

and y ∈ V, we have that x is adjacent to y in the graph Ω[⊥](V).

Theorem 5.1. Let (V , [·, ·]) be an indefinite metric space, the graph Ω[⊥](V) has a complete
induced subgraph.

Proof. Let x, y ∈ B0, then we have [x, x] = 0 and [y, y] = 0. From the polarization identity we
have:

[x, y] =
1

4
[x+ y, x+ y]− 1

4
[x− y, x− y] +

i

4
[x+ iy, x+ iy]− i

4
[x− iy, x− iy] = 0.

Therefore, x is adjacent to y, thus the graph Ω[⊥](B
0) is complete. Also the graph Ω[⊥](B

0) is
an induced subgraph of Ω[⊥](V). □

Remark 5.2. Let (V , [·, ·]) be an indefinite metric space, two elements x, y ∈ V are adjacent
in Ω[⊥](V) if and only if their respective additive inverses are adjacent.

Proof. Let x, y ∈ V be adjacent in Ω[⊥](V), then [x, y] = 0. Using inner product properties, we
have [−x,−y] = 0. Therefore, −x and −y are adjacent in Ω[⊥](V).
Reciprocally, let x, y ∈ V such that −x and −y are adjacent in Ω[⊥](V), then [−x,−y] = 0.
Again, using inner product properties is easy to see [x, y] = 0. Thus, we concluded that x and
y are adjacent in Ω[⊥](V). □
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Proposition 5.1. Let (V , [·, ·]) be an indefinite metric space. If K is a nonempty subset of V,
then the graph Ω[⊥](K ∪ {0}) is connected.

Proof. Let x ∈ K. Then

[0, x] = [x+ (−x), x] = [x, x] + [−x, x] = [x, x]− [x, x] = 0.

So, if x ∈ K ∪ {0}, then, x is adjacent to 0 in the graph Ω[⊥](K ∪ {0}). Therefore, for every
a, b ∈ K∪{0} there is a path that join them, that is, the graph Ω[⊥](K∪{0}) is connected. □

Example 5.1. Consider the indefinite metric space (R2, [·, ·]), in which it is defined [(a, b), (c, d)] =
ac− bd. If

K = {(2, 8), (4, 1), (3, 3), (4, 4), (5, 5), (6, 6), (9, 9)},
then the graph Ω[⊥](K) (see Figure 1) is orthogonal.

(2, 8)
(4, 1)

(4, 4)
(6, 6)

(5, 5)

(9, 9)
(3, 3)

Figure 1. Orthogonal graph Ω[⊥](K).

Theorem 5.2. Let (V , [·, ·]) be an indefinte metric space, E1, E2 subsets of V such that E1 ⊆ E2.
Then the graph Ω[⊥](E

[⊥]
2 ) is an induced subgraph of Ω[⊥](E

[⊥]
1 ).

Proof. Let x ∈ E
[⊥]
2 , then x[⊥]y, for all y ∈ E2. Given that E1 ⊆ E2 it follows that x[⊥]y, for all

y ∈ E1. This is x ∈ E
[⊥]
1 . Thus, E[⊥]

2 ⊆ E
[⊥]
1 . From Proposition 3.2 we have that E[⊥]

1 and E
[⊥]
2 are

subspaces of V . Hence,
(
E

[⊥]
1 , [·, ·]

)
and

(
E

[⊥]
2 , [·, ·]

)
are indefinite metric spaces, as E[⊥]

2 ⊆ E
[⊥]
1

then V
(
Ω[⊥](E

[⊥]
2 )

)
⊆ V

(
Ω[⊥](E

[⊥]
1 )

)
. Now let x, y be adjacent vertices in the graph Ω[⊥](E

[⊥]
2 ).

Then, by definition of the orthogonal graph, x, y ∈ E
[⊥]
2 and [x, y] = 0. So, x, y ∈ E

[⊥]
1 . Thus,

x, y also are adjacent in the graph Ω[⊥](E
[⊥]
1 ). Whereby, E

(
Ω[⊥](E

[⊥]
2 )

)
⊆ E

(
Ω[⊥](E

[⊥]
1 )

)
. In

conclusion, the graph Ω[⊥](E
[⊥]
2 ) is an induced subgraph of the graph Ω[⊥](E

[⊥]
1 ). □

The following result is an immediate consequence of the previous theorem.

Corolary 5.1. Let (V , [·, ·]) be an indefinite metric space and E a subset of V. Then the graph
Ω[⊥](E

[⊥][⊥][⊥]) is an induced subgraph of Ω[⊥](E
[⊥]).

6. Conclusions

In this work, we present the definition of the power graph of a finite group, developing the
most relevant results of the subject. Based on the fact that each graph can be represented in
a matrix form, we study the behavior of the eigenvalues of the power graph P (G). Also, we
associate a graph to a space with indefinite metric, which we call orthogonal graph of (V , [·, ·]).
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From this definition we draw a new line of research, and we study some important characteristics
of the graph Ω[⊥](V).
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