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Resumen

En esta nota se introducen algunas matrices cuyas entradas usan progresiones aritméticas o geométricas para su forma-
ción. Estas matrices aparecen en matemática recreativa (cuadrados mágicos), en criptografı́a y en ecuaciones diferencia-
les. Se definen operaciones sobre el conjunto de estas matrices y se prueba que los conjuntos de estas matrices junto con
estas operaciones tienen estructura de grupo, anillo y espacio vectorial.
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Abstract

This note introduces some matrices whose entries use arithmetic or geometric progressions for their formation. These
matrices appear in recreational mathematics (magic squares), cryptography and differential equations. On these matrices
some operations were defined and it could be proved that together (matrices and operations), they have a group, ring,
and vector space structure.
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1. Introducction

In a previous work [FCA], the authors interested in addressing the notion of group in the basic courses
of Abstract Algebra [F, H], introduce matrices whose entries use arithmetic or geometric progressions and
check, under different operations, whether these sets comply with the axioms to be a group or not. In addition,
they make observations on how to approach the concept of group in university courses that introduce Abstract
Algebra.
The authors use matrices and progressions to work on the topic, since they consider that these are notions
that the student has handled in previous courses and that do not involve a high level of complexity, seeking
in this way, to introduce the concepts with elements already known to the students.
In this work, we show that the sets of matrices whose entries use arithmetic progressions have a ring structure
and vector space, while the set of matrices whose entries use geometric progressions has a group structure.
In recreational math, magic squares feature prominently [An, R]. The matrices that are introduced in this
work and that use arithmetic progressions correspond in the case of Mn(1, 1, n) to a normal magic square and
in the case of Mn(a, b, c) to a non-normal magic square. In the case of differential equations, the matrices
worked here give rise to new results in differential algebra [AR].

2. Matrices and progressions

Definition 2.1. Let us consider the following matrices of order n
a a + b a + 2b · · · a + (n − 1)b

a + c a + b + c a + 2b + c · · · a + (n − 1)b + c
...

...
...

. . .
...

a + (n − 1)c a + b + (n − 1)c a + 2b + (n − 1)c · · · a + (n − 1)b + (n − 1)c


whose rows and columns follow arithmetic progressions, with a as the element in position (1, 1) and with
a, b, c complex numbers. These matrices will noted as Mn(a, b, c) since these elements characterize them
completely. We note the set formed by these matrices as MCn, that is, MCn = {Mn(a, b, c)|a, b, c ∈ C}. On
some occasions, we will work with matrices of MCn with a, b, c ∈ C∗, forming a set that we will note as
MC∗nn .

Examples: 1. Consider the matrix M3(1,−1, 3) such that

M3(1,−1, 3) =

 1 0 −1
4 3 2
7 6 5


2. In the case that a = 1, b = 1 y c = n we have that the matrix Mn(1, 1, n) is the list of the first n2 natural
numbers whose first row are the first n natural numbers, the second the natural numbers from n + 1 up to 2n
and so on. The elements of this matriz are the elements of a normal magic square of size n × n. [An, R]
3. In the case that a, b, c ∈ N, the elements of the matrix Mn(a, b, c) form a non-normal magic square of siza
n × n. [An, R]
4. If n ∈ N then the matrix Mn(1, 1, n) is known as natural matrix [RG] and if a, b, c ∈ N then the matrix
Mn(a, b, c) is known as modified natural matrix.
5. Observe that the transpose of the matrix Mn(a, b, c) is the matrix Mn(a, c, b).
6. In the case in which n = 7, a = 1, b = 1 and c = 7 the matrix M7(1, 1, 7) is called a calendar matrix
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because of its resemblance to a calendar.
7. The M20×13(1, 7, 1) module 13 matrix is known as the Tzolkin Synchronary -the count of days- in the
Mayan culture [V].

Since the matrices Mn(a, b, c) follow arithmetic progressions in both rows and columns, we have that the
position i, j of these matrices is given by a + ( j − 1)b + (i − 1)c. So Mn(a, b, c) = (mi j), where mi j =

a + ( j − 1)b + (i − 1)c, with i, j = 1, 2, . . . , n, n positive integer and a, b, c ∈ C.

Consider the matrix Mn(e, f , h) = (ni j), where ni j = e + ( j − 1) f + (i − 1)h, with i, j = 1, 2, . . . , n, n
positive integer and e, f , h ∈ C. We have that Mn(a, b, c) + Mn(e, f , h) = (mi j) + (ni j) = (mi j + ni j) =

(a+ ( j−1)b+ (i−1)c+e+ ( j−1) f + (i−1)h) = ((a+e)+ ( j−1)(b+ f )+ (i−1)(c+h)) = Mn(a+e, b+ f , c+h).
It is easy to prove that the matrix Mn(0, 0, 0) is the neutral element of MCn, and for the matrix Mn(a, b, c) we
have the matrix Mn(−a,−b,−c) = −Mn(a, b, c) as an inverse element. The associativity and commutativity
follow from the usual sum of matrices of order n.

From the above we have the following:

Proposition 2.1. The matrices Mn(a, b, c), with n positive integer and with the usual sum of matrices is an
abelian group with neutral element Mn(0, 0, 0), and the matrix Mn(a, b, c) has the matrix Mn(−a,−b,−c) =

−Mn(a, b, c) as an inverse element.

Let us now consider the matrices Mn(a, b, c) = (mi j) where mi j = a + ( j − 1)b + (i − 1)c, Mn(d, e, f ) = (ni j)
where ni j = d + ( j − 1)e + (i − 1) f y Mn(h, r, s) = (pi j) where pi j = h + ( j − 1)r + (i − 1)s.
We define the product × over the set of matrices MCn, as follows: Mn(a, b, c) × Mn(d, e, f ) = (mi j) × (ni j) =

(ad + ( j− 1)be + (i− 1)c f ), that is, Mn(a, b, c)×Mn(d, e, f ) = Mn(ad, be, c f ) and therefore, this product is a
law of internal composition in MCn.

For this product the matrix Mn(1, 1, 1) is the identity element, a fact that follows easily from the definition
of the product ×. It also follows easily from the definition that Mn(a, b, c) × Mn(d, e, f ) = Mn(d, e, f ) ×
Mn(a, b, c). That is, the product × in MCn satisfies the commutative property.

We will see next that the newly defined product satisfies the associative property on the set MCn. Indeed,

(Mn(a, b, c) × Mn(d, e, f )) × Mn(h, r, s) = Mn(ad, be, c f ) × Mn(h, r, s)
=Mn((ad)h, (be)r, (c f )s) = Mn(a(dh), b(er), c( f s))
=Mn(a, b, c) × Mn((dh), (er), ( f s))
=Mn(a, b, c) × (Mn(d, e, f ) × Mn(h, r, s))

We will see next that the defined product is compatible with the sum of matrices over the set of matrices
MCn. For this we calculate

(Mn(a, b, c) + Mn(d, e, f )) × Mn(h, r, s) = Mn(a + d, b + e, c + f ) × Mn(h, r, s)
= Mn((a + d)h, (b + e)r, (c + f )s)
= Mn(ah + dh, br + er, cs + f s)
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On the other hand,

Mn(a, b, c) × Mn(h, r, s) + Mn(d, e, f ) × Mn(h, r, s) = Mn(ah, br, cs) + Mn(dh, er, f s)
= Mn(ah + dh, br + er, cs + f s)

Comparing the two resulting matrices in each member and after applying the distributive and associative
property of complex numbers, the equality of these two matrices is verified.

From the above we have the following:

Proposition 2.2. The set MCn with the sum + and the product × is an unitary commutative ring.

It also follows that the invertible elements in this ring are the elements Mn(a, b, c) where a, b, c ∈ C∗.

The set MCn is a vector space by defining a scalar multiplication as follows for α ∈ C y Mn(a, b, c) ∈ MCn.

α · Mn(a, b, c) = α · (mi j) = α · (a + ( j − 1)b + (i − 1)c) = (αa + ( j − 1)αb + (i − 1)αc) = Mn(αa, αb, αc)

Now, for the matrix Mn(a, b, c) we have:

Mn(a, b, c) = a · Mn(1, 0, 0) + b · Mn(0, 1, 0) + c · Mn(0, 0, 1)

This tells us that the given matrix is a linear combination of the matrices Mn(1, 0, 0), Mn(0, 1, 0), Mn(0, 0, 1).
In case of equating this combination of matrices to the null matrix we have that a = 0, b = 0 y c = 0. There-
fore, we have thar the matrices Mn(1, 0, 0), Mn(0, 1, 0), Mn(0, 0, 1) are linearly independent and generate the
vector space MCn, that is, they constitute a basis for this space. Thus, MCn is a vector space of dimension 3.

Recall that in a ring R an ideal is a nomempty subset U of R, such that U is a subgroup of R under the
operation of addition and for all u in U and r in R, both ur and ru are in U. I we consider sets of matri-
ces of the form Mn(a, 0, 0), Mn(0, b, 0), Mn(0, 0, c), Mn(a, b, 0), Mn(a, 0, c), Mn(0, b, c) it follows easily that
these sets with the operations of addition (+) and multiplication (×) defined in the set MCn are ideals of MCn.

In the case of considering geometric progressions, we have the following definition:

Definition 2.2. Let us consider the following matrices of order n
a ab ab2 · · · abn−1

ac abc ab2c · · · abn−1bc
...

...
...

. . .
...

acn−1 abcn−1 ab2cn−1 · · · abn−1cn−1

 ,
whose rows and columns are geometric progressions, with a as the element in position (1, 1) and with a, b, c
complex numbers. We note these matrices by Pn(a, b, c) since these elements characterize them completely.
We will note the set formed by these matrices by PCn, that is, PCn = {Pn(a, b, c)|a, b, c ∈ C}. On some
occasions, we will work with matrices of Pn with a, b, c ∈ C∗, forming a set that we will notice by PC∗n.

Example: Consider the matrix P3(2,−1, 3) such that

P3(2,−1, 3) =

 2 −2 2
6 −6 6

18 −18 18


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Given that the matrices Pn(a, b, c) follow geometric progressions in both rows and columns, we have that the
position i, j of said matrices is given by ab j−1ci−1 with i, j = 1, 2, . . . , n, n positive integer and a, b, c ∈ C∗.
Once we have an expression for the matrices Pn(a, b, c) we will prove that the operation * is a law of internal
composition on the set PC∗n.

Consider the matrix Pn(e, f , h) = (ni j), where ni j = e f j−1hi−1, with i, j = 1, 2, . . . , n, n positive integer
and a, b, c ∈ C∗. We have that Pn(a, b, c) ∗ Pn(e, f , h) = (mi j) ∗ (ni j) = (mi jni j) = (ab j−1ci−1e f j−1hi−1) =

((ae)(b f ) j−1(ch)i−1) = Pn(ae, b f , ch).

It is easy to prove that the matrix Pn(1, 1, 1) is the neutral element of Pn, and for the matrix Pn(a, b, c) with
a, b, c ∈ C∗ we have the matrix P−1

n (a, b, c) = Pn(a−1, b−1, c−1) as an inverse element. The associativity and
commutativity of the matrices Pn(a, b, c) in P∗n follow from the associativity and commutativity of the pro-
duct of the complex numbers.

From the above we have the following:

Proposition 2.3. The matrices Pn(a, b, c) = (ni j) where ni j = ab j−1ci−1 with i, j = 1, 2, . . . , n, n positive
integer and a, b, c ∈ C∗, with the product of matrices ∗ is an abelian group with neutral element Pn(1, 1, 1),
and for the matrix Pn(a, b, c) we have P−1

n (a, b, c) = Pn(a−1, b−1, c−1) as an inverse element.
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