Algunas propiedades de $\mathbb{Z}_{n}[x]$ siendo n no necesariamente primo

Some properties of $\mathbb{Z}_{n}[x]$ being n not necessarily prime

Primitivo Acosta-Humánez
Instituto Superior de Formación Docente Salomé Ureña - ISFODOSU

primitivo.acosta-humanez@isfodosu.edu.do

Resumen

En este artículo se presentan algunos resultados originales y elementales relacionados con algunas propiedades de polinomios mónicos con coeficientes en \mathbb{Z}_{n}, siendo n no necesariamente primo. En particular se introduce una función para calcular el número de raíces de tales polinomios. Este artículo está basado en la tesis de grado "Grupos Diedros y del Tipo $(p, q) "([\sqrt{2}])$, presentada por el autor bajo la dirección de Jairo Charris Castañeda y Jesús Hernando Pérez (Pelusa).

Palabras claves:
Anillos, polinomios, teorema chino del resto.

Abstract

In this paper we present some originals and elementary results related with some properties of monic polynomials with coefficients belonging to \mathbb{Z}_{n}, where n is not prime. In particular we introduce a function to compute the number of roots of such polynomials. This paper is based on the BS thesis "Grupos Diedros y del Tipo (p, q)" ([2]), written by the author under the supervision of Jairo Charris Castañeda and Jesús Hernando Pérez (Pelusa).

Keywords:
Rings, polynomials, chinese remainder theorem.

1. Introduction

This paper is an slightly improvement, translated to English, of the first part of the bachelor dissertation [2]), which was published recently in the book "Memorias Grandes Maestros de la Matemática en Colom-
bia", edited by Ivan Castro and Fernando Zalamea, see [1]. Other sequel paper correspond to [3] and see also [4, 5, §11].

We understand the readers are familiarized with some basic concepts related to number theory and group theory, see [4, 5]. We start setting the following notations: by φ we means the Euler's totient function, also called the Euler's φ function. By $U\left(\mathbb{Z}_{n}\right)$ we means the multiplicative group of the roots of unity in \mathbb{Z}_{n}.

Concerning the results of the paper, we can say that each one of them is elementary and original. To present the results we start introducing the notation $\operatorname{ch}(f, n, m)$ to mean the number of the roots of the polynomial $f(x) \in \mathbb{Z}_{n}$, being $\operatorname{grad}(f(x))=m \geq 0$. To honor Jairo Charris, teacher, friend and mentor, the notation $\operatorname{ch}(f, n, m)$ is read as the Charris of polynomial f of degree m belonging to $\mathbb{Z}_{n}[x]$.

The main results of this paper are summarized as follows:
Theorem 2.1 Let $k=\prod_{i=1}^{r} k_{i}$ such that k_{i} is a positive integer for $i=1,2, \ldots, r, \operatorname{gcd}\left(k_{i}, k_{j}\right)=1$, then, $\operatorname{ch}(f, k, n)=\prod_{i=1}^{r} \operatorname{ch}\left(f, k_{i}, n\right)$.
Theorem 2.2 Let q, be no necessarily prime, p be a prime and $U\left(\mathbb{Z}_{q}\right)$ be the multiplicative group of roots of unity in $\mathbb{Z}_{\|}$. Then $p \mid \varphi(q)$, if and only if, there exists $a \in \mathbb{Z}$ such that $\bar{a} \in U(॥)$ and $|\bar{a}|=p$, and we can suppose that $1 \leq a \leq q$. Furthermore, if $H=[\bar{a}]$, then, $H=\left[\bar{a}^{l}\right]$ for all $1 \leq l \leq p-1$ with $\operatorname{gcd}(l, p)=1$. Finally, if $U\left(\mathbb{Z}_{q}\right)$ is cyclic and $b \in \mathbb{Z}$ is such that $\bar{b} \in U\left(\mathbb{Z}_{q}\right)$ and that $|\bar{b}|=p$, there exist $1 \leq l \leq p-1$ with $\operatorname{gcd}(l, p)=1$ such that $b \equiv a^{l}(\operatorname{mód} q)$.

Theorem2.3 If q is prime, then, $U\left(\mathbb{Z}_{q}\right)$ is cyclic, also $U\left(\mathbb{Z}_{q}\right)=\mathbb{Z}_{q}^{*}=\mathbb{Z}_{q}-\{0\}$.
Theorem 2.4 The group $U\left(\mathbb{Z}_{q}\right)$ is a cyclic group if and only if q is some of the numbers $2,4, p^{k}$ either $2 p^{k}$ with p odd prime.

Theorem 2.5 Let G a group of order $p q$ where $p<q$ are prime numbers. Then $p \mid q-1$, if and only if, there exists $\bar{a} \in \mathbb{Z}_{q}^{*}$ such that $|\bar{a}|=p$, and we can suppose that $1 \leq a<q$. If besides, $H=[\bar{a}]$ is subgroup \mathbb{Z}_{q}^{*} \underline{g} enerate for \bar{a}, then, $H=\left[a^{l}\right]$ for all $1 \leq l \leq p-1$ with $\operatorname{gcd}(l, p)=1$. Finally, if $b \in \mathbb{Z}$ is such that $\bar{b} \in U\left(\mathbb{Z}_{q}\right)$ and that $|\bar{b}|=p$, there exist $1 \leq l \leq p-1$ with $\operatorname{gcd}(l, p)=1$ such that $b \equiv a^{l}(\bmod q)$.

We hope that this paper can motivate students to wonderful world of polynomials in $\mathbb{Z}_{n}[x]$.

2. Some properties of $\mathbb{Z}_{n}[x]$.

In this section we analyze some properties of \mathbb{Z}_{n}.
Let $n \geq 1$ an integer, not necessarily prime, and consider the ring $\left(\mathbb{Z}_{n},+, \cdot\right)$. Consider $f(x), g(x) \in \mathbb{Z}_{n}[x]$, where $g(x)$ is monic. Then there $q(x) \in \mathbb{Z}_{n}[x]$ and $r(x) \in \mathbb{Z}_{n}[x]$, with $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$, such that

$$
f(x)=q(x) g(x)+r(x)
$$

If $\operatorname{deg}(g(x))>\operatorname{deg}(f(x))$, then for $g(x)$ monic we have that $q(x)=0$ and $r(x)=f(x)$. From elsewhere $\operatorname{deg}(g(x)) \leq \operatorname{deg}(f(x))$ and $g(x)$ is monic then

$$
f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{i=0}^{n} b_{i} x^{i}
$$

with $a_{n} \neq 0, b_{m}=1, m \leq n$, where $m=\operatorname{deg}(g(x))$ and $n=\operatorname{deg}(f(x))$. To proceed by induction on $n=$ $\operatorname{deg}(f(x))$, if $n=0$, then $m=0, f(x)=a_{0}, g(x)=1$. Let $q(x)=a_{0} \cdot 1=a_{0}$ and $r(x)=0$, then, $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ and $f(x)=q(x) g(x)+r(x)=a_{0} \cdot 1+0=a_{0}$. Now suppose that the lemma is true for polynomials of degree less that $n=\operatorname{deg}(f(x))$. A simple calculation shows that the polynomial $\left(a_{n} x^{n-m}\right) g(x)$ have degree n and leading coefficient a_{n}. So

$$
f(x)-\left(a_{n} x^{n-m}\right) g(x)=\sum_{i=0}^{n} a_{i} x^{i}-\sum_{i=0}^{m} a_{n} b_{i} x^{n-m+i}, b_{m}=1
$$

is a polynomial of degree less that n. By hypothesis of induction there polynomials $q^{\prime}(x)$ and $r(x)$ such that

$$
f(x)-\left(a_{n} x^{n-m}\right) g(x)=q^{\prime}(x) g(x)+r(x) \text { and } \operatorname{deg}(r(x))<\operatorname{deg}(g(x)),
$$

however, if $q(x)=a_{n} x^{n-m}+q^{\prime}(x)$, then

$$
f(x)=\left(a_{n} x^{n-m}\right) g(x)+q^{\prime}(x) g(x)+r(x)=q(x) g(x)+r(x)
$$

Now see the uniqueness of $q(x)$ and $r(x)$. Suppose that $f(x)=q_{1}(x) g(x)+r_{1}(x)$ and that $f(x)=q_{2}(x) g(x)+$ $r_{2}(x)$, then $\left(q_{1}(x)-q_{2}(x)\right) g(x)=\left(r_{2}(x)-r_{1}(x)\right)$ and as $b_{m}=1, \operatorname{deg}\left(\left(q_{1}(x)-q_{2}(x)\right) g(x)\right)=\operatorname{deg}\left(q_{1}(x)-q_{2}(x)\right)+$ $\operatorname{deg}(g(x))=\operatorname{deg}\left(r_{2}(x)-r_{1}(x)\right)$

$$
\operatorname{deg}\left(r_{2}(x)-r_{1}(x)\right) \leq \operatorname{máx}\left(\operatorname{deg}\left(r_{1}(x)\right), \operatorname{deg}\left(r_{2}(x)\right)\right)<\operatorname{deg}(g(x))
$$

is true, if and only if, $\operatorname{deg}\left(q_{1}(x)-q_{2}(x)\right)=-\infty=\operatorname{deg}\left(r_{2}(x)-r_{1}(x)\right)$, which indicates that $q_{1}(x)-q_{2}(x)=0$ and $r_{2}(x)-r_{1}(x)=0$; therefore $q_{1}(x)=q_{2}(x)$ and $r_{2}(x)=r_{1}(x)$ Let $f(x) \in \mathbb{Z}_{n}[x], a \in \mathbb{Z}_{n}$. Then $f(x)=$ $q(x)(x-a)+f(a)$, where $q(x) \in \mathbb{Z}_{n}[x]$ and n not necessarily prime If $f(x)=0$ then $q(x)=0$. Suppose that $f(x) \neq 0$. The previous lemma says that exist polynomials uniques $q(x), r(x) \in \mathbb{Z}_{n}[x]$ and n not necessarily prime such that $f(x)=q(x)(x-a)+r(x)$ and $\operatorname{deg}(r(x))<\operatorname{deg}(x-a)=1$, then $r(x)=r$ is a polynomial constant (possibly zero)

$$
\begin{aligned}
& \text { if } q(x)=\sum_{j=0}^{n-1} b_{j} x^{j} \text { then } f(x)=q(x)(x-a)+r \\
& f(x)=-b_{o} a+b_{n-1} x^{n}+r+\sum_{k=1}^{n-1}\left(-b_{k} a+b_{k-1}\right) x^{k}
\end{aligned}
$$

where

$$
\begin{gathered}
f(a)=-b_{o} a+b_{n-1} a^{n}+r+\sum_{k=1}^{n-1}\left(-b_{k} a+b_{k-1}\right) a^{k} \\
=-\sum_{k=0}^{n-1} b_{k} a^{k+1}+\sum_{k=1}^{n} b_{k-1} a^{k}+r=-\sum_{k=1}^{n} b_{k-1} a^{k}+\sum_{k=1}^{n} b_{k-1} a^{k}+r=r .
\end{gathered}
$$

Then $f(x)=q(x)(x-a)+f(a)$. Can see that if $f(x) \in \mathbb{Z}_{n}[x]$ and $\operatorname{deg}(f(x))=m \geq 1$, then not necessarily $f(x)$ has at most m roots in $\mathbb{Z}_{n}[x]$. Sufficient to consider the following counterexample: if $f(x)=(2 x+2)^{2} \in \mathbb{Z}_{4}[x]$ and $\operatorname{deg}(f(x))=2$, then, $f(x)$ has four roots $0,1,2,3=\mathbb{Z}_{4}[x]$. If n is prime, the assertion is true as shown in the following lemma.

Also shows that when n is not prime, $x^{m}-\overline{1}$ has at most m distinct roots in \mathbb{Z}_{n}. simply take the following counterexample, if $f(x)=x^{2}-1 \in \mathbb{Z}_{8}[x], f(x)$ is roots $1,3,5,7$. If n is prime, the assertion is true, as shown in the following lemma. In what follows in this chapter, the notation will be used $\operatorname{ch}(f, n, m)$ to indicated the number of roots of polynomial $f(x) \in \mathbb{Z}_{n}$ with $\operatorname{deg}(f(x))=m \geq 0$. This notation is adopted as a tribute to Professor Charris.
The following theorem is an application of Chinese Remainder Theorem, and generalizes the two previous lemmas.

Theorem 2.1. Let $k=\prod_{i=1}^{r} k_{i}$ such that k_{i} is a positive integer for $i=1,2, \ldots, r, \operatorname{gcd}\left(k_{i}, k_{j}\right)=1$, then, $\operatorname{ch}(f, k, n)=\prod_{i=1}^{r} \operatorname{ch}\left(f, k_{i}, n\right)$.
suppose that $f(a)=0$ with $a \in \mathbb{Z}_{k_{i}}$ for each $i=1,2, \ldots, r$. For the Chinese Remainder Theorem, there exist a integer a such that $a \equiv a_{i}\left(\bmod k_{i}\right)$ for each $i=1,2, \ldots, r$ and a is unique module k. Therefore, for each $i=1,2, \ldots, r$ we have $f(a) \equiv f\left(a_{i}\right) \equiv 0\left(\bmod k_{i}\right)$ and as any solution of the congruence polynomial $f(x) \equiv 0(\operatorname{modk})$ is solution of the system $f(x) \equiv 0\left(\bmod k_{i}\right)$ for each $i=1,2, \ldots, r$, then $f(a)=0, a \in \mathbb{Z}_{k}$. And so we can build all the roots of $f(x) \in \mathbb{Z}_{k}$ and we can choose a_{1} of $\operatorname{ch}\left(f, k_{1}, n\right)$ forms, a_{2} of $\operatorname{ch}\left(f, k_{2}, n\right)$ forms and successively $\operatorname{ch}(f, k, n)=\prod_{i=1}^{r} c h\left(f, k_{i}, n\right)$, as we wanted to test If $k=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, where p_{i} is prime, $i=1, \ldots, r$ we can take $k_{i}=p_{i}^{\alpha_{i}}$ in the previous theorem and we see that the problem of finding roots of a polynomial of $\mathbb{Z}_{n}[x]$ is reduced to use the fundamental theorem of arithmetic. Similarly shows that $c h$ is a homomorphism (of monoids by setting $f \mathrm{y} n$) of \mathbb{Z}^{+}to \mathbb{Z}^{+}

Let $k=\prod_{i=1}^{r} k_{i}$ such that k_{i} is a integer positive for each $i=1, \ldots, r, \operatorname{gcd}\left(k_{i}, k_{j}\right)=1$ for $i \neq j$, then, the number of roots of the unity in \mathbb{Z}_{k} is the product number of roots of the unity in $\mathbf{Z}_{k_{i}}$ for each $i=1,2 \ldots, r$. sufficient to take in the theorem previous a $x^{m}-1$ in place of $f(x)$ If $k \geq 3, f(x)=x^{2}-1$, then $\operatorname{ch}\left(f, 2^{k}, 2\right)=4$ Is consequence immediate of theorem 1.1. and of corollary 1.1. Given $m \geq 1, k \geq 1$ and p a prime number odd, then, $x^{m}-\overline{1}$ has at most m roots different in \mathbb{Z}_{n}, if and only if, n is any of the numbers $2,4, p^{k}$ either $2 p^{k}$. $\varphi(2)=1, \varphi(4)=2, \varphi\left(p^{k}\right)=\varphi\left(2 p^{k}\right)=(p-1) p^{k-1}$. the converse is an immediate consequence of corollary 2.1. Let G an abelian finite group and for each $n \in \mathbb{Z}^{+}$, are G^{n} and G_{n} two subsets of G, defined as follows:

$$
G^{n}=\left\{a^{n} \mid a \in G\right\}, \quad G_{n}=\left\{a \in G \mid a^{n}=e\right\}
$$

then G^{n} and G_{n} are both subgroups G and

$$
G / G_{n} \approx G^{n} .
$$

$a^{n}, b^{n} \in G^{n}$, then $b^{-n}=\left(b^{n}\right)^{-1} \in G^{n}$ and therefore, $\left(b^{-1} a\right)^{n}=a^{n}\left(b^{-1}\right)^{n}=a^{n}\left(b^{n}\right)^{-1} \in G$ and therefore, $G^{n} \leq G$. The same form, if $a, b \in G_{n}$, then $a^{n}=e, b^{n}=e, b^{-n}=\left(b^{-1}\right)^{n}=\left(b^{n}\right)^{-1}=e$ and consequence, $\left(b^{-1} a\right)^{n}=a^{n}\left(b^{-1}\right)^{n}=a^{n}\left(b^{n}\right)^{-1}=e \in G_{n}$ and therefore, $G_{n} \leq G . f: G \rightarrow G^{\prime}$ such that $a \mapsto a^{n}$, then $\operatorname{Im}(f)=G^{n}$ and $\operatorname{Ker}(f)=G_{n}$, applying the first isomorphism theorem must be $G / \operatorname{Ker}(f) \approx \operatorname{Im}(f)$ and therefore $G / G_{n} \approx G^{n}$ If, in the lemma 2.5. $n \mid \circ(G)$, then, also, $n \mid \circ\left(G_{n}\right)$ Is consequence of lemma 1.5. and theorem of classification of abelian finite groups. Let G, G^{n} and G_{n} defined as on the lemma 1.5, G abelian. If for all $n \in \mathbb{Z}, n \geq 1$ have that $\circ\left(G_{n}\right) \leq n$, then $\circ\left(G_{n}\right)=n$ for all n such that $n \mid \circ(G)$ For the lemma 2.6 have that $\circ\left(G_{n}\right)=n k$ for some $k \in \mathbb{Z}^{+}$an as $\circ\left(G_{n}\right) \leq n$, then $k=1$ and $\circ\left(G_{n}\right)=n$ Let p prime and G a p-abelian group. Then, for all $n \in \mathbb{Z}^{+}, \circ\left(G_{n}\right) \leq n$, then G is cyclic Is consequence of the fact that $\circ(G)=p^{m}$ for some $m \geq 1$ and that for all prime p, all $p-$ subgroup of Sylow of G is cyclic. Generalizing the previous theorem for any abelian finite group, have: If G is an abelian finite group such that for all $n \in \mathbb{Z}^{+}, \circ\left(G_{n}\right) \leq n$, then G is cyclic. As G is a abelian group finite such that for all $G_{n}=\left\{a \in G \mid a^{n}=e\right\}$ where the number of elements fails to n, then $G=[a]=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ with $G_{n} \leq G$ If G is a cyclic finite group, then, $\circ\left(G_{n}\right) \leq n$ and if $n \mid \circ(G)$ then $\circ\left(G_{n}\right)=n \quad G=[a]=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ and as $G_{n}=\left\{a \in[a] \mid a^{n}=e\right\}$ and therefore $\circ\left(G_{n}\right) \leq n$. Now, if $n \mid \circ(G)$, then, $\circ(G)=n[a]$ and so $\circ\left(G_{n}\right)=n$ If G is a cyclic finite group, for all $n \in \mathbb{Z}, n \geq 1$, such that $n \circ(G), G$ have an unique subgroup H of order n, which is cyclic $G=[a]=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$, then, $\circ(G)=|a|=m$, where $n \mid m$ and therefore $\left|a^{n}\right|=\frac{m}{n}$. Let $d=\frac{m}{n}$, then $H=\left[a^{d}\right]$ is a subgroup of order n. Suppose now that exist b such that $H=\left[a^{b}\right]$ is a subgroup of order n, where b is the smallest positive integer such that $a^{b} \in H$. As $\frac{m}{d}=n=\circ(H)=\left|a^{b}\right|$, then $d \mid b$ and therefore $H=\left[a^{b}\right] \leq\left[a^{d}\right]$, where $\circ\left(\left[a^{d}\right]\right)=n=\circ(H)$ and so $H=\left[a^{d}\right]$.

Theorem 2.2. Let q, be no necessarily prime, p be a prime and $U\left(\mathbb{Z}_{q}\right)$ be the multiplicative group of roots of unity in $\mathbb{Z}_{\|}$. Then $p \mid \varphi(q)$, if and only if, there exists $a \in \mathbb{Z}$ such that $\bar{a} \in U(॥)$ and $|\bar{a}|=p$, and we can suppose that $1 \leq a \leq q$. Furthermore, if $H=[\bar{a}]$, then, $H=\left[\bar{a}^{l}\right]$ for all $1 \leq l \leq p-1$ with $\operatorname{gcd}(l, p)=1$. Finally, if $U\left(\mathbb{Z}_{q}\right)$ is cyclic and $b \in \mathbb{Z}$ is such that $\bar{b} \in U\left(\mathbb{Z}_{q}\right)$ and that $|\bar{b}|=p$, there exist $1 \leq l \leq p-1$ with $\operatorname{gcd}(l, p)=1$ such that $b \equiv a^{l}(\operatorname{mód} q)$.

Is consequence of the definition of $U\left(\mathbb{Z}_{q}\right)$ an of order of $U\left(\mathbb{Z}_{q}\right)$
Theorem 2.3. If q is prime, then, $U\left(\mathbb{Z}_{q}\right)$ is cyclic, also $U\left(\mathbb{Z}_{q}\right)=\mathbb{Z}_{q}^{*}=\mathbb{Z}_{q}-\{0\}$.
Is consequence of lemma 1.2 and of fact that $U\left(\mathbb{Z}_{q}\right)$ is generate any of its element Note that, under the hypothesis of the theorem above, if $p<q$ and $p \mid q-1$, the equation $x^{p}=\overline{1}$ have a set complete of different solutions in \mathbb{Z}_{q}^{*} (i.e, p different solutions, the only possible.)
can easily see that $U\left(\mathbb{Z}_{14}\right)$ is cyclic, while $U\left(\mathbb{Z}_{16}\right)$ is not cyclic. Now we generalize the theorem 1.3.
Theorem 2.4. The group $U\left(\mathbb{Z}_{q}\right)$ is a cyclic group if and only if q is some of the numbers $2,4, p^{k}$ either $2 p^{k}$ with p odd prime.

Suppose that q is none of the above forms. We can considerate 2 cases:

1. $q=2^{r} \prod_{i=1}^{k} p_{i}^{\alpha_{i}}$ with $k \geq 2$ or with $k=1$ and $r \geq 2$.
2. $q=2^{k}$ with $k \geq 3$.
see that in neither case $U\left(\mathbb{Z}_{q}\right)$ is cyclic. In the first case, $p_{1}^{\alpha_{1}}>2$ and $q / p_{1}^{\alpha_{1}}>2$, then $2 \mid \varphi\left(p_{1}^{\alpha_{1}}\right)$ and $2 \mid \varphi\left(q / p_{1}^{\alpha_{1}}\right)$. As $a^{\varphi\left(p_{1}^{\alpha_{1}}\right)} \cong 1\left(\operatorname{mód} p_{1}^{\alpha_{1}}\right)$ y $a^{\varphi\left(q / p_{1}^{\alpha_{1}}\right)} \equiv 1\left(\operatorname{mód} q / p_{1}^{\alpha_{1}}\right)$ have that $a^{\frac{1}{2} \varphi\left(p_{1}^{\alpha_{1}}\right) \varphi\left(q / p_{1}^{\alpha_{1}}\right)} \cong 1\left(\operatorname{mód} p_{1}^{\alpha_{1}}\right)$ y $a^{\frac{1}{2} \varphi\left(p_{1}^{\alpha_{1}}\right) \varphi\left(q / p_{1}^{\alpha_{1}}\right)} \cong 1\left(\bmod q / p_{1}^{\alpha_{1}}\right)$ and therefore $a^{\frac{1}{2} \varphi\left(p_{1}^{\alpha_{1}}\right) \varphi\left(q / p_{1}^{\alpha_{1}}\right)} \equiv 1(\operatorname{mód} q)$. Then if $a \in U(q)$, then $|a| \leq \frac{1}{2} \varphi\left(p_{1}^{\alpha_{1}}\right) \varphi\left(q / p_{1}^{\alpha_{1}}\right)=\frac{\varphi(q)}{2}<\varphi(q)$ and therefore $U(q)$ can't be cyclic. In the second case, if $\operatorname{gcd}(a, q)=1$, where $n=2^{k}$, then, a is odd of the form $a=1+2 b$ and we have $a^{2}=1+4 b+b^{2}=1+2^{3} c, a^{4}=1+2^{4} d$, $a^{8}=1+2^{5} e$, in general for an argument inductive, if $j \geq$, then $a^{2^{j-2}}=1+2^{j} g \equiv 1\left(\right.$ mód $\left.2^{j}\right)$. and therefore, $a^{2^{k-2}} \equiv 1\left(\right.$ mod $\left.2^{k}\right)$ and if $a \in U\left(2^{k}\right)$, then, $|a| \leq 2^{k-2}<2^{k-1}=\varphi\left(2^{k}\right)$, which implies that $U\left(2^{k}\right)$ can't be cyclic.
to prove the converse, you have to clarament that $U(2)=\{1\}, U(4)=\{1,3\}$ are cyclic groups. Also for the theorem 1.3, $U(p)$ is cyclic. We see now that $U\left(p^{k}\right)$ is cyclic if $k>1$. Let $k=q+1$. Should be found in $U\left(p^{q+1}\right)$ an element of order $\varphi\left(p^{q+1}\right)=(p-1) p^{q}$. Choosing $a^{p}(p+1)$ where a is a generator of $U(p)$, $t=\left|a^{p}(p+1)\right|$ in $U\left(p^{q+1}\right)$, then $t \mid U\left(p^{q+1}\right)=(p-1) p^{q}$. As $a^{p}(p+1) \equiv a^{p} \equiv a($ mod $p)$, then, $|a|=p-1$ in $U(p)$ and $\left(a^{p}(p+1)\right)^{t} \equiv 1\left(\operatorname{mód} p^{q+1}\right) \equiv 1(\operatorname{mód} p)$, since $t \mid(p-1) p^{q}$ and $p-1 \mid t$, then, $t=p^{k}(p-1)$, As $\left(a^{p}(p+1)\right)^{p^{q-1}(p-1)} \equiv(1+p)^{p^{q-1}(p-1)}$ mód p^{q+1}, then $\left(a^{p}(p+1)\right)^{p^{q-1}(p-1)} \not \equiv 1\left(\right.$ mód $\left.p^{q+1}\right)$ since $1+p$ have order p^{q} in $U\left(p^{q+1}\right)$. Therefore $t \nmid p^{q-1}(p-1)$, and necessarily $t=p^{q}(p-1)$ as wanted

Theorem 2.5. Let G a group of order $p q$ where $p<q$ are prime numbers. Then $p \mid q-1$, if and only if, there exists $\bar{a} \in \mathbb{Z}_{q}^{*}$ such that $|\bar{a}|=p$, and we can suppose that $1 \leq a<q$. If besides, $H=[\bar{a}]$ is subgroup \mathbb{Z}_{q}^{*} generate for \bar{a}, then, $H=\left[a^{l}\right]$ for all $1 \leq l \leq p-1$ with $\operatorname{gcd}(l, p)=1$. Finally, if $b \in \mathbb{Z}$ is such that $\bar{b} \in U\left(\mathbb{Z}_{q}\right)$ and that $|\bar{b}|=p$, there exist $1 \leq l \leq p-1$ with $\operatorname{gcd}(l, p)=1$ such that $b \equiv a^{l}(\operatorname{mód} q)$.

Is consequence of theorems 1.2. and 1.4.

Referencias

[1] P.B Acosta-Humánez, Algunas observaciones sobre polinomios mónicos con coeficientes en el anillo \mathbb{Z}_{n}, in Memorias Grandes Maestros de la Matemática en Colombia 02 Jairo Charris, Editors Ivan Castro and Fernando Zalamea, 2018, pp. 213-223.
[2] P.B Acosta-Humánez, Grupos Diedros y del Tipo (p, q). Trabajo de Grado presentado como requisito para optar al título de Matemático, Bogotá, Universidad Sergio Arboleda, 2004.
[3] P.B Acosta-Humánez, Teoremas de isomorfía en grupos diedros. Lecturas Matemáticas, 24 (2003), 123-136
[4] J. Charris, B. Aldana and P.B. Acosta-Humánez, Algebra I. Fundamentos y Teoría de los Grupos, Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 2005.
[5] J. Charris, B. Aldana and P.B. Acosta-Humánez, Algebra. Fundamentos, Grupos, Anillos, Cuerpos y Teoría de Galois, Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 2013.

