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Resumen

En este artı́culo se presentan algunos resultados originales y elementales relacionados con algunas propiedades de poli-
nomios mónicos con coeficientes en Zn, siendo n no necesariamente primo. En particular se introduce una función para
calcular el número de raı́ces de tales polinomios. Este artı́culo está basado en la tesis de grado ”Grupos Diedros y del
Tipo (p, q)”([2]), presentada por el autor bajo la dirección de Jairo Charris Castañeda y Jesús Hernando Pérez (Pelusa).
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Abstract

In this paper we present some originals and elementary results related with some properties of monic polynomials with
coefficients belonging to Zn, where n is not prime. In particular we introduce a function to compute the number of roots
of such polynomials. This paper is based on the BS thesis ”Grupos Diedros y del Tipo (p, q)”([2]), written by the author
under the supervision of Jairo Charris Castañeda and Jesús Hernando Pérez (Pelusa).
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1. Introduction

This paper is an slightly improvement, translated to English, of the first part of the bachelor dissertation
[2]), which was published recently in the book ”Memorias Grandes Maestros de la Matemática en Colom-
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bia”, edited by Ivan Castro and Fernando Zalamea, see [1]. Other sequel paper correspond to [3] and see
also [4, 5, §11].

We understand the readers are familiarized with some basic concepts related to number theory and group
theory, see [4, 5]. We start setting the following notations: by ϕ we means the Euler’s totient function, also
called the Euler’s ϕ function. By U(Zn) we means the multiplicative group of the roots of unity in Zn.

Concerning the results of the paper, we can say that each one of them is elementary and original. To
present the results we start introducing the notation ch( f , n,m) to mean the number of the roots of the poly-
nomial f (x) ∈ Zn, being grad( f (x)) = m ≥ 0. To honor Jairo Charris, teacher, friend and mentor, the notation
ch( f , n,m) is read as the Charris of polynomial f of degree m belonging to Zn[x].

The main results of this paper are summarized as follows:

Theorem 2.1 Let k =
r∏

i=1
ki such that ki is a positive integer for i = 1, 2, . . . , r, gcd(ki, k j) = 1, then,

ch( f , k, n) =
r∏

i=1
ch( f , ki, n).

Theorem 2.2 Let q, be no necessarily prime, p be a prime and U(Zq) be the multiplicative group of roots of
unity in Zq. Then p|ϕ(q), if and only if, there exists a ∈ Z such that a ∈ U(q) and |a| = p, and we can
suppose that 1 ≤ a ≤ q. Furthermore, if H = [a], then, H = [al] for all 1 ≤ l ≤ p−1 with gcd(l, p) = 1.
Finally, if U(Zq) is cyclic and b ∈ Z is such that b ∈ U(Zq) and that |b| = p, there exist 1 ≤ l ≤ p − 1
with gcd(l, p) = 1 such that b ≡ al( mód q).

Theorem 2.3 If q is prime, then, U(Zq) is cyclic, also U(Zq) = Z∗q = Zq − {0}.

Theorem 2.4 The group U(Zq) is a cyclic group if and only if q is some of the numbers 2, 4, pk either 2pk

with p odd prime.

Theorem 2.5 Let G a group of order pq where p < q are prime numbers. Then p|q − 1, if and only if, there
exists a ∈ Z∗q such that |a| = p, and we can suppose that 1 ≤ a < q. If besides, H = [a] is subgroup Z∗q
generate for a, then, H = [al] for all 1 ≤ l ≤ p − 1 with gcd(l, p) = 1. Finally, if b ∈ Z is such that
b ∈ U(Zq) and that |b| = p, there exist 1 ≤ l ≤ p − 1 with gcd(l, p) = 1 such that b ≡ al( mód q).

We hope that this paper can motivate students to wonderful world of polynomials in Zn[x].

2. Some properties of Zn[x].

In this section we analyze some properties of Zn.
Let n ≥ 1 an integer, not necessarily prime, and consider the ring (Zn,+, ·). Consider f (x), g(x) ∈ Zn[x],

where g(x) is monic. Then there q(x) ∈ Zn[x] and r(x) ∈ Zn[x], with deg(r(x)) < deg(g(x)), such that

f (x) = q(x)g(x) + r(x)

If deg(g(x)) > deg( f (x)), then for g(x) monic we have that q(x) = 0 and r(x) = f (x). From elsewhere
deg(g(x)) ≤ deg( f (x)) and g(x) is monic then

f (x) =
n∑

i=0
aixi, g(x) =

n∑
i=0

bixi
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with an , 0, bm = 1,m ≤ n, where m = deg(g(x)) and n = deg( f (x)). To proceed by induction on n =

deg( f (x)), if n = 0, then m = 0, f (x) = a0, g(x) = 1. Let q(x) = a0 · 1 = a0 and r(x) = 0, then,
deg(r(x)) < deg(g(x)) and f (x) = q(x)g(x) + r(x) = a0 · 1 + 0 = a0. Now suppose that the lemma is true for
polynomials of degree less that n = deg( f (x)). A simple calculation shows that the polynomial (anxn−m)g(x)
have degree n and leading coefficient an. So

f (x) − (anxn−m)g(x) =
n∑

i=0
aixi −

m∑
i=0

anbixn−m+i, bm = 1

is a polynomial of degree less that n. By hypothesis of induction there polynomials q′(x) and r(x) such that

f (x) − (anxn−m)g(x) = q′(x)g(x) + r(x) and deg(r(x)) < deg(g(x)),

however, if q(x) = anxn−m + q′(x), then

f (x) = (anxn−m)g(x) + q′(x)g(x) + r(x) = q(x)g(x) + r(x).

Now see the uniqueness of q(x) and r(x). Suppose that f (x) = q1(x)g(x) + r1(x) and that f (x) = q2(x)g(x) +

r2(x), then (q1(x)−q2(x))g(x) = (r2(x)−r1(x)) and as bm = 1, deg((q1(x)−q2(x))g(x)) = deg(q1(x)−q2(x))+

deg(g(x)) = deg(r2(x) − r1(x))

deg(r2(x) − r1(x)) ≤ máx(deg(r1(x)), deg(r2(x))) < deg(g(x))

is true, if and only if, deg(q1(x) − q2(x)) = −∞ = deg(r2(x) − r1(x)), which indicates that q1(x) − q2(x) = 0
and r2(x) − r1(x) = 0; therefore q1(x) = q2(x) and r2(x) = r1(x) Let f (x) ∈ Zn[x], a ∈ Zn. Then f (x) =

q(x)(x − a) + f (a), where q(x) ∈ Zn[x] and n not necessarily prime If f (x) = 0 then q(x) = 0. Suppose that
f (x) , 0. The previous lemma says that exist polynomials uniques q(x), r(x) ∈ Zn[x] and n not necessarily
prime such that f (x) = q(x)(x − a) + r(x) and deg(r(x)) < deg(x − a) = 1, then r(x) = r is a polynomial
constant (possibly zero)

if q(x) =
n−1∑
j=0

b jx j then f (x) = q(x)(x − a) + r;

f (x) = −boa + bn−1xn + r +
n−1∑
k=1

(−bka + bk−1)xk

where

f (a) = −boa + bn−1an + r +
n−1∑
k=1

(−bka + bk−1)ak

= −
n−1∑
k=0

bkak+1 +
n∑

k=1
bk−1ak + r = −

n∑
k=1

bk−1ak +
n∑

k=1
bk−1ak + r = r.

Then f (x) = q(x)(x−a)+ f (a). Can see that if f (x) ∈ Zn[x] and deg( f (x)) = m ≥ 1, then not necessarily f (x)
has at most m roots in Zn[x]. Sufficient to consider the following counterexample: if f (x) = (2x+2)2 ∈ Z4[x]
and deg( f (x)) = 2, then, f (x) has four roots 0, 1, 2, 3 = Z4[x]. If n is prime, the assertion is true as shown in
the following lemma.

Also shows that when n is not prime, xm − 1 has at most m distinct roots in Zn. simply take the following
counterexample, if f (x) = x2 − 1 ∈ Z8[x], f (x) is roots 1, 3, 5, 7. If n is prime, the assertion is true, as shown
in the following lemma. In what follows in this chapter, the notation will be used ch( f , n,m) to indicated the
number of roots of polynomial f (x) ∈ Zn with deg( f (x)) = m ≥ 0. This notation is adopted as a tribute to
Professor Charris.
The following theorem is an application of Chinese Remainder Theorem, and generalizes the two previous
lemmas.
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Theorem 2.1. Let k =
r∏

i=1
ki such that ki is a positive integer for i = 1, 2, . . . , r, gcd(ki, k j) = 1, then,

ch( f , k, n) =
r∏

i=1
ch( f , ki, n).

suppose that f (a) = 0 with a ∈ Zki for each i = 1, 2, . . . , r. For the Chinese Remainder Theorem, there
exist a integer a such that a ≡ ai(modki) for each i = 1, 2, . . . , r and a is unique module k. Therefore, for
each i = 1, 2, . . . , r we have f (a) ≡ f (ai) ≡ 0(modki) and as any solution of the congruence polynomial
f (x) ≡ 0(modk) is solution of the system f (x) ≡ 0(modki) for each i = 1, 2, . . . , r, then f (a) = 0, a ∈ Zk.
And so we can build all the roots of f (x) ∈ Zk and we can choose a1 of ch( f , k1, n) forms, a2 of ch( f , k2, n)

forms and successively ch( f , k, n) =
r∏

i=1
ch( f , ki, n), as we wanted to test If k = pα1

1 pα2
2 · · · p

αr
r , where pi is

prime, i = 1, . . . , r we can take ki = pαi
i in the previous theorem and we see that the problem of finding roots

of a polynomial of Zn[x] is reduced to use the fundamental theorem of arithmetic. Similarly shows that ch
is a homomorphism (of monoids by setting f y n) of Z+ to Z+

Let k =
r∏

i=1
ki such that ki is a integer positive for each i = 1, . . . , r, gcd(ki, k j) = 1 for i , j, then, the

number of roots of the unity in Zk is the product number of roots of the unity in Zki for each i = 1, 2 . . . , r.
sufficient to take in the theorem previous a xm−1 in place of f (x) If k ≥ 3, f (x) = x2−1, then ch( f , 2k, 2) = 4
Is consequence immediate of theorem 1.1. and of corollary 1.1. Given m ≥ 1, k ≥ 1 and p a prime number
odd, then, xm−1 has at most m roots different in Zn, if and only if, n is any of the numbers 2, 4, pk either 2pk.
ϕ(2) = 1, ϕ(4) = 2, ϕ(pk) = ϕ(2pk) = (p − 1)pk−1. the converse is an immediate consequence of corollary
2.1. Let G an abelian finite group and for each n ∈ Z+, are Gn and Gn two subsets of G, defined as follows:

Gn = {an | a ∈ G}, Gn = {a ∈ G | an = e},

then Gn and Gn are both subgroups G and

G/Gn ≈ Gn.

an, bn ∈ Gn, then b−n = (bn)−1 ∈ Gn and therefore, (b−1a)n = an(b−1)n = an(bn)−1 ∈ G and therefore,
Gn ≤ G. The same form, if a, b ∈ Gn, then an = e, bn = e, b−n = (b−1)n = (bn)−1 = e and consequence,
(b−1a)n = an(b−1)n = an(bn)−1 = e ∈ Gn and therefore, Gn ≤ G. f : G → G′ such that a 7→ an, then
Im( f ) = Gn and Ker( f ) = Gn, applying the first isomorphism theorem must be G/Ker( f ) ≈ Im( f ) and
therefore G/Gn ≈ Gn If, in the lemma 2.5. n| ◦ (G), then, also, n| ◦ (Gn) Is consequence of lemma 1.5. and
theorem of classification of abelian finite groups. Let G, Gn and Gn defined as on the lemma 1.5, G abelian.
If for all n ∈ Z, n ≥ 1 have that ◦(Gn) ≤ n, then ◦(Gn) = n for all n such that n|◦(G) For the lemma 2.6 have
that ◦(Gn) = nk for some k ∈ Z+ an as ◦(Gn) ≤ n, then k = 1 and ◦(Gn) = n Let p prime and G a p−abelian
group. Then, for all n ∈ Z+, ◦(Gn) ≤ n, then G is cyclic Is consequence of the fact that ◦(G) = pm for some
m ≥ 1 and that for all prime p, all p− subgroup of Sylow of G is cyclic. Generalizing the previous theorem
for any abelian finite group, have: If G is an abelian finite group such that for all n ∈ Z+, ◦(Gn) ≤ n, then G
is cyclic. As G is a abelian group finite such that for all Gn = {a ∈ G|an = e} where the number of elements
fails to n, then G = [a] = {an|n ∈ Z} with Gn ≤ G If G is a cyclic finite group, then, ◦(Gn) ≤ n and if n| ◦ (G)
then ◦(Gn) = n G = [a] = {an|n ∈ Z} and as Gn = {a ∈ [a]|an = e} and therefore ◦(Gn) ≤ n. Now, if n| ◦ (G),
then, ◦(G) = n[a] and so ◦(Gn) = n If G is a cyclic finite group, for all n ∈ Z, n ≥ 1, such that n| ◦ (G), G
have an unique subgroup H of order n, which is cyclic G = [a] = {an|n ∈ Z}, then, ◦(G) = |a| = m, where
n|m and therefore |an| = m

n . Let d = m
n , then H = [ad] is a subgroup of order n. Suppose now that exist b

such that H = [ab] is a subgroup of order n, where b is the smallest positive integer such that ab ∈ H. As
m
d = n = ◦(H) = |ab|, then d|b and therefore H = [ab] ≤ [ad], where ◦([ad]) = n = ◦(H) and so H = [ad].
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Theorem 2.2. Let q, be no necessarily prime, p be a prime and U(Zq) be the multiplicative group of roots
of unity in Zq. Then p|ϕ(q), if and only if, there exists a ∈ Z such that a ∈ U(q) and |a| = p, and we can
suppose that 1 ≤ a ≤ q. Furthermore, if H = [a], then, H = [al] for all 1 ≤ l ≤ p − 1 with gcd(l, p) = 1.
Finally, if U(Zq) is cyclic and b ∈ Z is such that b ∈ U(Zq) and that |b| = p, there exist 1 ≤ l ≤ p − 1 with
gcd(l, p) = 1 such that b ≡ al( mód q).

Is consequence of the definition of U(Zq) an of order of U(Zq)

Theorem 2.3. If q is prime, then, U(Zq) is cyclic, also U(Zq) = Z∗q = Zq − {0}.

Is consequence of lemma 1.2 and of fact that U(Zq) is generate any of its element Note that, under the
hypothesis of the theorem above, if p < q and p|q − 1, the equation xp = 1 have a set complete of different
solutions in Z∗q(i.e, p different solutions, the only possible.)
can easily see that U(Z14) is cyclic, while U(Z16) is not cyclic. Now we generalize the theorem 1.3.

Theorem 2.4. The group U(Zq) is a cyclic group if and only if q is some of the numbers 2, 4, pk either 2pk

with p odd prime.

Suppose that q is none of the above forms. We can considerate 2 cases:

1. q = 2r
k∏

i=1
pαi

i with k ≥ 2 or with k = 1 and r ≥ 2.

2. q = 2k with k ≥ 3.

see that in neither case U(Zq) is cyclic. In the first case, pα1
1 > 2 and q/pα1

1 > 2, then 2|ϕ(pα1
1 ) and

2|ϕ(q/pα1
1 ). As aϕ(pα1

1 ) � 1( mód pα1
1 ) y aϕ(q/pα1

1 ) ≡ 1( mód q/pα1
1 ) have that a

1
2 ϕ(pα1

1 )ϕ(q/pα1
1 ) � 1( mód pα1

1 )
y a

1
2 ϕ(pα1

1 )ϕ(q/pα1
1 ) � 1( mód q/pα1

1 ) and therefore a
1
2 ϕ(pα1

1 )ϕ(q/pα1
1 ) ≡ 1( mód q). Then if a ∈ U(q), then

|a| ≤ 1
2ϕ(pα1

1 )ϕ(q/pα1
1 ) =

ϕ(q)
2 < ϕ(q) and therefore U(q) can’t be cyclic. In the second case, if gcd(a, q) = 1,

where n = 2k, then, a is odd of the form a = 1 + 2b and we have a2 = 1 + 4b + b2 = 1 + 23c, a4 = 1 + 24d,
a8 = 1 + 25e, in general for an argument inductive, if j ≥, then a2 j−2

= 1 + 2 jg ≡ 1( mód 2 j). and therefore,
a2k−2

≡ 1( mód 2k) and if a ∈ U(2k), then, |a| ≤ 2k−2 < 2k−1 = ϕ(2k), which implies that U(2k) can’t be
cyclic.
to prove the converse, you have to clarament that U(2) = {1}, U(4) = {1, 3} are cyclic groups. Also for the
theorem 1.3, U(p) is cyclic. We see now that U(pk) is cyclic if k > 1. Let k = q + 1. Should be found
in U(pq+1) an element of order ϕ(pq+1) = (p − 1)pq. Choosing ap(p + 1) where a is a generator of U(p),
t = |ap(p + 1)| in U(pq+1), then t|U(pq+1) = (p − 1)pq. As ap(p + 1) ≡ ap ≡ a( mód p), then, |a| = p − 1 in
U(p) and (ap(p + 1))t ≡ 1( mód pq+1) ≡ 1( mód p), since t|(p − 1)pq and p − 1|t, then, t = pk(p − 1), As
(ap(p + 1))pq−1(p−1) ≡ (1 + p)pq−1(p−1) mód pq+1, then (ap(p + 1))pq−1(p−1) . 1( mód pq+1) since 1 + p have
order pq in U(pq+1). Therefore t - pq−1(p − 1), and necessarily t = pq(p − 1) as wanted

Theorem 2.5. Let G a group of order pq where p < q are prime numbers. Then p|q − 1, if and only if, there
exists a ∈ Z∗q such that |a| = p, and we can suppose that 1 ≤ a < q. If besides, H = [a] is subgroup Z∗q
generate for a, then, H = [al] for all 1 ≤ l ≤ p− 1 with gcd(l, p) = 1. Finally, if b ∈ Z is such that b ∈ U(Zq)
and that |b| = p, there exist 1 ≤ l ≤ p − 1 with gcd(l, p) = 1 such that b ≡ al( mód q).

Is consequence of theorems 1.2. and 1.4.
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