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Vol. VII , No 1, (2020)

Received: 10-Oct-2020; Approved 15 Dec 2020
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Resumen

En este artı́culo, se establece el origen de los sistemas dinámicos discretos desde una perspectiva histórica, ası́ como sus
ideas seminales: puntos fijos y periódicos, comportamiento caótico, bifurcaciones. Este viaje comienza con los trabajos
de Poincaré y termina con la obra de May, uno de los artı́culos cientı́ficos mas importantes del siglo XX.

Este artı́culo está basado en la tesis de Maestrı́a ”Simple Permutatios, Pasting and Reversing”([22]), presentada por
el primer autor bajo la dirección del segundo autor.

Palabras claves:
Poincaré, Lorenz, Hénon, May, Mapa, Cuadrático, Sistemas, Dinámicos, Problema de los tres cuerpos, Atractor,
Caótico, Conjunto, Cantor.

Abstract

In this paper, the origin of discrete dynamics is stated from a historical point of view, as well as its main ideas: fixed and
periodic points, chaotic behaviour, bifurcations. This travel will begin with Poincaré’s work and will finish with May’s
work, one of the most important scientific papers of 20th century.

This paper is based on the M.Sc. thesis ”Simple Permutations, Pasting and Reversing”([22]), written by the first
author under the guidance of the second author.
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1. Introduction

This paper corresponds to the theoretical framework of the master thesis [22], in where were combined
techiques of dynamical systems (some of them will be presented here) with Pasting and Reversing techiques
(see [2, 3, 9, 10, 11, 12] ). In particular, in this paper the origin of Discrete Dynamics will be presented.
A meaningful context may be useful to understand the relevance and further applications of this branch of
Dynamical Systems. In this way, a historical landscape will help the reader to answer the question: Why and
what for do we study discrete dynamical systems?

2. Poincaré

Going back in time, the origin of this problem can be set in one name: Henri Poincaré. Born into a
middle-upper class family, Poincaré was one of the last universal mathematicians. He entered the École
Polytechnique in 1873, receiving his doctorate in 1879, after this, began a university career at University of
Caen and then, in 1881, at University of Paris ([17]). Poincaré’s work includes contributions to almost all
areas of mathematics, even physics and theoretical astronomy.

In fact, The beginning of this story lies on an astronomical problem: The three-body problem. It is well
known that a system of two orbiting masses, interacting through gravitational acceleration can be described
by using a differential equation. In this case, the system is analytically solvable. However, a system with
three or more masses under the same hypotheses is not analytically solvable.

Since there is no way to determine the significant number of state spaces analytically, A contest was held
to produce the best research in celestial mechanics, related to the stability of the solar system (a particular
case of the n-body problem). This contest, held in 1889 to commemorate the 60th birthday of King Oscar II
of Sweden and Norway ([13]) declared Poincaré as winner.

In a field mainly dominated by quantitative methods so far (i.e. series expansions), Poincaré innovated
by using new quantitative methods and simplifying assumptions. He assumed that the three bodies can be
in a plane, since this decreases one degree of freedom. Furthermore, he assumed that one of the masses can
be depreciated respect to the other two (e.g. Earth, Moon, and an artificial satellite orbiting among them).
From this point of view, the problem turns into describing the third (small) body orbit using as reference the
other two. Even when it was well known that two large masses would travel in ellipses, Poincaré considered
once again a particular case: they would move in circles (with center in the center of mass of the system)
at a constant speed. This simpler way to face the problem,took him into the ideas of stable and unstable
manifolds, as well as homoclinic points.

2.1. Poincaré Sections

Even if all these ideas are revolutionary at that time, there is still one more, an idea that will create a
whole new way to understand dynamic systems: The Poincaré section. This method is used to look complex
trajectories at a simpler way. Instead of study (trace) the whole trajectory, Poincaré consider the intersection
of it with a two-dimensional plane. This reduces the problem from n to n − 1 dimensions. Besides, in this
particular case, the dynamic system is reduced into a discrete map.

Definition 2.1. A map is a formula that describes the new state in terms of the previous state.
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Consider C as a trajectory (i.e. the solution of a differential equation with initial conditions A) and S as
a Two-dimensional plane. The intersections of C and S determines a (discrete) set of points. This set is the
Poincaré map.

Definition 2.2. Let G be A map defined by C ∩ S , such that G(A) = B. G is a Poincaré map.

Figura 1. Poincaré section

The plane S is named surface of section. By using this technique, Chaotic behavior of differential equa-
tions can be studied by reduction”to discrete dynamics. An orbit will be periodic if there exists n such that
G(n)(A) = A.
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Figura 2. Poincaré section as in [25]

Poincaré sections were applied in problems related with the integrability and non-integrability of hamil-
tonian dynamical systems, see [4, 5, 6, 7, 8] Since Poincaré maps are simpler to evaluate, even by computer,
they were used to study complex trajectories, such as the ones determined by Lorenz system in ([19]). Once
the discrete dynamics is created, our path follows in two branches: Lorenz (and Hénon) and May.

3. Lorenz and Hénon

Edward Lorenz (1917 - 2008) began his career as mathematician, however, during WWII he moved into
Atmospheric Sciences (Weather predictions) ([14]). He studied systems with forced dissipative hydrodyna-
mic flow, whose solutions can be understood as trajectories in phase space, and based on these solutions,
examine the feasibility of very-long-range weather predictions. If it is true that some hydrodynamical sys-
tems show either steady-state flow patterns or periodic oscillations, Lorenz found a case (cellular convection)
in which all solutions are unstable and nonperiodic.
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Figura 3. Edward Lorenz as in [14]

3.1. Lorenz Chaotic Attractor

In Deterministic Nonperiodic Flow ([19]) Lorenz stated instability conditions with respect to modifi-
cations of small amplitude. This instability is due to sensitive dependence on initial conditions. Let P(t) a
trajectory. The trajectory is unstable if | P(t1) − P(t1 + τ) |< ε for some t but | P(t) − P(t + τ) |≮ ε as t → ∞.

Definition 3.1. The Lorenz system 
Ẋ = −σX + σY
Ẏ = −XZ + rX − Y
Ż = XY − bZ

The stability of the system can be understood by linearization x0
y0
z0

 =

 −σ σ 0
(r − Z) −1 −X

Y X −b


 x0

y0
z0


This system has a steady-state solution if X = Y = Z = 0. With this solution, the characteristic equation

of this matrix is
[λ + b][λ2 + (σ + 1)λ + σ(1 − r)] = 0

This equation has three real roots if r > 0, and one of them is positive if r > 1. In this case the system has
two more steady-state solutions X = Y = ±

√
b(r − 1),Z = r−1. Taking these solutions into the linearization

system the new characteristic equation is

λ3 + (σ + b + 1)λ2 + (r + σ)bλ + 2σb(r − 1) = 0
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Once again, if r > 1 this equation has one real negative root. Besides, if

r =
σ(σ + b + 3)
σ − b − 1

the complex conjugate roots are pure imaginary. Unfortunately, this information about Lorenz system obtai-
ned by linearization only applies over small perturbations, so numerical integration is required. Following
Saltzman’s work, Lorenz used σ = 10, r = 28, b = 8

3 , a double-approximation procedure, and a Royal
McBee LGP-30 electronic computer to obtain numerical solutions (see Figure 4).

Figura 4. Royal McBee LGP-30 electronic computer

In this method, an initial time t0 and an increment ∆t are set, and let Xi,n = Xi(t0+n∆t). Then we introduce
the auxiliary approximations

Xi,n+1 = Xi,n + Fi(Pn)∆t

Xi,n+2 = Xi,n+1 + Fi(Pn+1)∆t

where Pn = (X1,n, . . . , XM,n), with M as the number of variables of the system. The double-approximation
procedure is defined by

Xi,n+1 = Xi,n +
1
2

[Fi(Pn) + Fi(Pn+1)]∆t

From the previous equations it follows that the double-approximation procedure can be rewritten as:

Xi,n+1 = Xi,n +
1
2

[Fi(Pn) + Fi(Pn+1)]∆t

= Xi,n +
1
2

[
Xi,n+1 − Xi,n

∆t
+

Xi,n+2 − Xi,n+1

∆t
]∆t

= Xi,n +
1
2

[Xi,n+1 − Xi,n + Xi,n+2 − Xi,n+1

=
1
2

[Xi,n+2 + Xi,n]
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Lorenz concluded that ”when our results concerning the instability of nonperiodic flow are applied to the
atmosphere, which is ostensibly nonperiodic, they indicate that prediction of the sufficiently distant future is
impossible by any method”([19]). However, this is not the key point in our story. He found that all solutions
are confined within the same bounds. This object that ”traps.all solutions is known as Lorenz Attractor.

Figura 5. Numerical solutions of Lorenz System, as in [19]

As we can see in Lorenz paper, he could catch the idea of the ”butterfly”trapping all trajectories. In fact,
he did a remarkable work showing the geometry of the attractor with the tools at his reach, by using phase
portraits and particular trajectories.
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Figura 6. Lorenz attractor for σ = 10, r = 28, b = 8
3

The attractor (as it can be seen in 3D plots) is a complex object, and due to its properties (explained
previously), the use or Poincaré sections to study it seems to be a good idea. Besides, the use of computers
favour this approach to the problem.

Figura 7. Some Poincaré sections of Lorenz Attractor
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The idea of Poincaré sections of Lorenz attractor will bring the next starring of our story: the french mat-
hematician and astronomer Michel Hénon (1931-2013). Despite his main research was in restricted-three-
body and n-body problems, he also did something quite relevant in discrete dynamics: Poincaré sections of
Lorenz system.

3.2. Hénon Map
In the paper A Two-dimensional Mapping with a Strange Attractor ([16]) Hénon shows that a discrete

mapping of the plane holds the same properties of Lorenz attractor. In Lorenz attractor, the divergence of the
flow has a constant negative value, so any volume shrinks exponentially with time, with a bounded region
trapping all trajectories. Hénon pointed out that the strange attractor seems to be (locally) the product of a
two-dimensional manifold by a Cantor set.

Definition 3.2. A set Λ is a Cantor Set if it is a closed, totally disconnected, and perfect subset of I. A set is
totally disconnected if it contains no intervals; a set is perfect if every point in it is an accumulation point of
limit point of other points in the set.

So finding a simpler model of Lorenz strange attractor allows better (qualitative and quantitative) explo-
rations of it. As a first step, Poincaré mapping of Lorenz attractor will be considered, instead of the whole
set. This will ”decrease”the problem in one less dimension. However, it still requires the numerical integra-
tion of the differential equation so a new (explicit) map T will be defined. even if it is not Lorenz system,
essential propertied will be held.
Pomeau (1976) showed that, in Lorenz system, a volume is stretched in one direction, and simultaneously
folded over itself, in the course of a revolution. Based on this Hénon took an elongated region and applied
the following transformations:

T ′ : x′ = x, y′ = y + 1 − ax2

T ′′ : x′′ = bx′, y′′ = y′

T ′′′ : x′′′ = y′′, y′′′ = x′′

The Hénon mapping is then defined as T = T ′′′T ′′T ′.

Definition 3.3. Henón Map
T : xi+1 = yi + 1 − ax2

i , yi+1 = bxi

Figura 8. Transformations to obtain the Hénon map T : xi+1 = yi + 1 − ax2
i , yi+1 = bxi

27
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It is possible to state some main qualitative features of this map. The Jacobian of the Hénon map is
constant ([26])

∂(xi+1, yi+1)
∂(xi, yi)

= −b

Besides, if a2x2 + b ≥ 0 the (real) eigenvalues are

−ax ±
√

a2x2 + b

An important element for its analysis is the fact that T is one to-one ([? ]). Thus it admits an inverse trans-
formation

T−1 : xi = b−1yi+1, yi = xi+1 − 1 +
a
b2 y2

i+1

Finally, T has two fixed points: x = 1
2a ±

√
(1 − b)2 + 4a, y = bx. The positive case is attracting if

a0 =
(1 − b)2

4
< a <

3(1 − b)2

4

This will be used to run numerical simulations.
In order to choose parameters, the author suggested b = 0,3. Once this value is fixed, the following

values of a represent qualitative changes of behavior:

a0 =
(1 − b)2

4
, a1 =

3(1 − b)2

4
, a2 ≈ 1,06, a3 ≈ 1,55

Taking into account that the important case of study is the strange attractor, let be a = 1,4, b = 0,3.
The invariant point is approximately (0,631354477089505, 0,189406343126851), so the initial value is set
as (0,63135448, 0,18940634).

a < a0 or a > a3 points escape to infinity
a0 < a < a1 stable invariant point
a1 < a < a2 stable invariant set of p points
a2 < a < a3 strange attractor

Tabla 1. Behavior of T respect to a, with b = 0,3
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Figura 9. Iterates of Hénon map n = 29, 33, 100, 1000

In the first numerical simulation, Hénon used (0, 0) as initial value. However, after finding the invariant
points, He used approximations of that point to start simulations.

Figura 10. Hénon map n = 104

The eigenvalues associated to this invariant point are

λ1 = 0,15594632...
λ2 = −1,92373886...

29
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The slopes given by the eigenvectors are

p1 = 1,92373886...
p2 = −0,15594632...

Due to λ2, this point is unstable. and the lines passing through that point with slopes p1 and p2 are the
stable and unstable manifolds respectively. The lines seem to be continuous, but after an enlargement, it is
evident that each curve is made of curves, as well as its similarity with a Cantor Set

Figura 11. Hénon map n = 5 × 106, CPU time: 707.81 s

Summarizing, Henón map shows a similar structure to Lorenz attractor, but its numerical exploration is
simpler. Lorenz and Pomeau inferred the Cantor set, but due to the contracting ratio on Lorenz map (7×105)
they couldn’t observe it, while T has a smaller ratio (b = 0,3). Now it is time to simplify this problem one
more time, going to one dimension and face the Cantor set in a simpler way.

4. May

Robert M. May (1936-2020) was, in the most general sense of the word, a scientist. Despite being
educated in chemistry and physics, he develop significant research in population dynamics, specially in
animal populations. This work was quite relevant to develop theoretical ecology, and also states a new
context to explore discrete dynamic systems: Difference equations. Based in a particular equation (known as
logistic model) he introduced chaotic behaviour by double-period bifurcation.

In Simple mathematical models with very complicated dynamics ([23]), the author summarized non-
linear phenomena, showing the way in which those simple models, used to model dynamics of biological
populations, move from stable points to chaos. In first-order difference equations, a variable Xt+1 is related
to its preceding value Xt. This is usually expressed as Xt+1 = F(Xt). A particular (and relevant) case is the
logistic difference equation Nt+1 = Nt(a − bNt). Taking X = bN

a , the equation turns into Xt+1 = aXt(1 + Xt).
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Figura 12. X(2)
t with a = 3,2

This last form was used for May to develop his paper. In order to keep all iterates in [0, 1], the maximum
value of f must be a

4 = 1, so a < 4. This is interesting, because May developed bifurcation theory with this
restriction over a, however, the case a > 4 is as much as interesting as the previous one, due to the emerging
Cantor set.

4.1. Quadratic Map, a < 4
Definition 4.1. Let f n(x) be the f ◦ f ◦ . . . ◦ f n times.

A point x is fixed for f (x) if f (x) = x. A point x is said to be periodic of period n if f n(x) = x, where the
least n holding this equation is named the prime period of x. ([15])

Fixed point are analogous to equilibrium values in (continuous) differential equations. In this case the
fixed points are:

X∗ = aX∗(1 − X∗)
X∗ = aX∗ − a(X∗)2

(1 − a)X∗ = −a(X∗)2

a(X∗)2 + (1 − a)X∗ = 0
X∗(aX∗ + (1 − a)) = 0

X∗ = 0; X∗ =
a − 1

a

Definition 4.2. A fixed point p is named hyperbolic if | f ′(p)| , 1. This point will be an attracting point if
| f ′(p)| < 1, and a repelling point if | f ′(p)| > 1

Since X′(0) = a and X′( a−1
a ) = 2− a. So 0 is a repelling point for a > 1, and a−1

a is an attracting point for
1 < a < 3. If a > 3, the point a−1

a is not hyperbolic, however, a pair of fixed point appear in X(2), it means, a
period-2 point. This is known as a double-period bifurcation of the parameter a, and the points repelled by
a−1

a lie on the new periodic orbit.
The period-2 orbit is stable if a < 3,449489742783179. After this value of a the period-2 orbit turns

into a period-4 orbit, showing again a double-period bifurcation. This bifurcation will appear as a increases,
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generating period-2n up to the accumulation point at a ≈ 3,57 ([23]). Beyond this point, infinite periodic
points with different periods will appear. In fact, at a ≈ 3,8284 appears a period-3 point, and after that, it
is possible to find periodic points of all periods, as well as aperiodic points. This step to chaos was proofed
simultaneously (and independently) by Li and Yorke in ([18]) and Sharkovskii ([? ]). This last approach is
one of the main referents of this work.

Still, there is one loose end: the relation between May’s difference equation and Hénon map. These two
objects will meet in a common place: the Cantor Set, and this is the reason why it makes sense ”to go
down”from 2 to 1 dimension. in this travel from Poincaré to May, it is possible to see how dynamic pheno-
menena are quite similar in (apparently) different structures. This is the importance of Discrete Dynamics as
a tool to understand continuous systems. In order to conclude this first part, the Cantor Set structure of the
quadratic map will be studied.

4.2. Quadratic map, a ≥ 4
The variation of a in the interval 1 < a < 4 produces an amazing chain reaction of bifurcations from

fixed points with stable orbits to chaos but, What if a ≥ 4?. If x ∈ I = [0, 1] and 1 ≤ a ≤ 4, the map
Xt+1 = aXt(1+ Xt) sends the interval I into a set S ⊂ I, keeping all iterates into I. On the other hand, if a > 4,
the image of I is [0, a

4 ] ⊃ I, and the orbit of points in the interval A0 = [ a−
√

a(a−4)
2a , a+

√
a(a−4)
2a ] is unstable,

since X1 > 1, X2 < 0 and Xn → −∞.
After the first iterate, only the points in I \ A0 have an image in I. Let be I0 ∪ I1 = I \ A0 the disjoint

intervals produced by subtracting A0. Analogously, the points of I with image in A0 in the first iterate, will
be part of an unstable orbit. The inverse image of A0 is a pair of intervals A1,0, A1,1 such that A1 = A1,0 ∪ A1,1
and A1,0 ⊂ I0, A1,1 ⊂ I1, So after this, the points remaining in I after 2 iterates are in four disjoint subsets of
I, generated by I0 \ A1 and I1 \ A2, it means, taking .a middle third.of the intervals again.

Let be An = {x ∈ I/Xi ∈ I, Xn+1 < I}. Points in An eventually will be part of an unstable orbit, so the
points with full dynamics in I will be the points in

Λ = I −
∞⋃

i=0

Ai

This process remains the Cantor Middle-Thirds set, since each iterate takes a ”middle interval.of the remai-
ning subintervals of I.
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Figura 13. Iterates of Xn with a > 4

Theorem 4.3. If a accomplishes that (∀x ∈ I \ A0)(|x′| > 1) then Λ is a Cantor set ([15])

Setting a proper a as above, there exists λ > 1 such that (∀x ∈ Λ)(|x′n| > λ), and it implies that |(xn)′| > λn.
This is relevant to show Λ is totally disconnected.

Suppose x , y, [x, y] ⊂ Λ, if c ∈ [x, y] then |(cn)′| > λn. Due to archimedean property it is possible to
choose n so that λn|x − y| > 1. According to the Mean Value Theorem |yn − xn| ≥ λ

n|y − x| > 1 so either xn

or yn is out of I, which is a contradiction, so Λ is totally disconnected. Besides, Λ is closed, since it is the
intersection of nested closed intervals.

Finally, Λ must be perfect. All endpoints of An will have 0 as image, staying in I from that point and
on. Consider now an isolated point c ∈ Λ. points in a neighbourhood of p should leave I after certain n∗, so
these points belong to An∗. There are two possibilities: a sequence of endpoints converges to c, or all points
in deleted neighbourhood of c leaves I eventually. In the first case, the points will stay in Λ. in the second
one, Xn maps c to 0, and its neighbourhood out of I (into the negative real axis). Xn has a maximum at p
since (pn)′ = 0, so pi = 1

2 for some i < n. This implies that pi+1 < I, which is again a contradiction.

5. Final Remarks

Dynamical systems are very important in the development of different areas, see for example [1] for
applications in Quantum Mechanics and see also [5, 6, 7, 8] for applications in Classical Mechanics. In
particular, discrete dynamical systems play an important role due to they are an useful tool to understand
continuous systems by decreasing its complexity, either by diminish dimensions or passing from continuous
to discrete time. Besides, they are a rich research field, with a significant number of unsolved problems,
such as genealogy of permutations, a qualitative description of forcing relationships in bifurcations, and the
extension of most of the 1-dimension methods to 2-dimensional systems.
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Referencias
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