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Abstract 

This work shows the procedure to obtain the generalization of the Cartesian coordinates of the Cyclogon 
with regular polygons of 𝑛 sides. This is a curve that is obtained from the trace of a point belonging to 
the polygon when it is rotated on a horizontal plane, this geometric place is derived from the cycloid, so 
the angle 𝛷 in charge of the rotation of the polygon is taken into account for its modeling, reaching to 
deductions like, that when this angle has given a cycle of 360 °, then the route in 𝑥 of the curve is equal 
to the perimeter of the figure. For this application, tools such as the sinus theorem, the length of a curve, 
the length of an arc and the equation of the line are used, that is why they are immersed in authors such 
as Baldor (2004), Purcell, Varberg and Rigdon (2007), Lehmann (1989), and Sullivan (2006), among 
others.  

 Keywords: Cyclogon, Analytic Geometry, Cycloid, Dynamic Geometry. 

Resumen 

Este trabajo muestra el procedimiento para obtener la generalización de las coordenadas cartesianas del 
Ciclogón con polígonos regulares de 𝑛 lados. Esta es una curva que se obtiene del rastro de un punto 
perteneciente a al polígono cuando este rota sobre un plano horizontal, este lugar geométrico deriva de 
la cicloide, así que se tiene en cuenta para su modelación el ángulo 𝛷	encargado de la rotación del 
polígono, llegando a deducciones como, que cuando dicho ángulo haya dado un ciclo de 360°, entonces 
el recorrido en 𝑥 de la curva es igual al perímetro de la figura. Para esta finalidad se utilizan herramientas 
como el teorema del seno, la expresión de la longitud de una curva, la longitud de un arco y la ecuación 
de la recta, es por ello que estuvieron inmersos autores como Baldor (2004), Purcell, Varberg y Rigdon 
(2007), Lehmann (1989), y Sullivan (2006), entre otros.  

Palabras Clave: Ciclogón, Geometría Analítica, Cicloide, Geometría Dinámica. 
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1. Justification 

The studies carried out so far about the cyclogon are around the areas involved in the rotation of the 
polygons, this is how Apostol and Mnatsakanian (2012) indicate things like, that the area left by the 
cyclogon is three times the area of the regular polygon , or on the other hand, if you want to make a path 
through which a square or hexagonal wheel can pass, that is, a regular polygon, what would that path be 
like? but now the central point of the polygon is following a parallel line with respect to the horizontal 
axis, this situation is solved with catenary paths. However, a study has not been carried out that 
establishes the Cartesian equations of the cycloid, which is why this paper states these equations so 
necessary for subsequent analysis of the curve, which can also contribute to the modeling of other types 
of curves, in addition to its application in mechanics as the cycloid does. 

 

 

2. Theoretical framework 

Since the seventeenth century, the cycloid has been a curve widely studied by different individuals over 
time, mostly physicists and mathematicians. Many of those who worked on this brachistochronous and 
tautochron curve disputed its discovery, such as Nicolás de Cusa, Galileo Galilei, Marín Mersenne, 
among others (Fernández, 2019). 

But, on the other hand, what happens when instead of a circle rotating on a horizontal plane were a 
polygon?; certainly the curve left by this is called a cyclogon, and the more sides the (regular) polygon 
has, the more the curve resembles being a cycloid. However, it can be done with both regular and 
irregular figures, it does not matter whether the point marked by the stroke is on the figure or not. Apostol 
and Mnatsakanian (2012) define this curve as: "when a polygonal disk rolls along a straight line, each 
vertex a curve we call cyclogon" (pg.67). 

Several things have been obtained from the study of this curve, for example, for every cyclogon generated 
by a regular polygon we have to: 

𝐴 = 𝑃 + 2𝐶	
Where A denotes the area of the region above the line of the horizontal plane and below the cyclogonal 
curve, that is, the area that forms the cyclogon with respect to the horizontal axis, P is the area of the 
polygon, and C is the area of the circular section that circumscribes the polygon. Here the question is to 
know exactly what is the area left by the cyclogon, there Apóstol and Mnatsakanian (2012) show said 
demonstration on page 69 of their book "New Horizons in Geometry". 

Also, Alsina and Nelsen (2010) show proofs about the area obtained by the rotation of the regular 
polygon, such as theorem 4.11: 

“When a regular polygon is rolled a line, the area of the polygonal cycloid generated by a vertex of the 
polygon is three times the area of the polygon” (pg. 68) 
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Illustration 1: Analysis used by Alsina and Nelsen (2010) to show that the area left by the cyclogon is three times the area of the 
polygon. 

 

Another proof that these authors carry out is about the following theorem: 

“When a regular polygon is rolled along a line, the length of the polygonal cycloid generated by a vertex 
of the polygon is four times the sum of the inradius and the circumradius of the polygon” (pg. 68) 

For the most part, advanced geometry books discuss the areas involved with the cyclogon, but there is 
no Cartesian relationship with the emergence of the curve. 

In addition, the curve that the polygon should have underneath (the shape of the plane) has also been 
studied so that when it turns on it, the center of the polygon travels a straight horizontal line parallel to 
the x axis. This appears in the museum of mathematics in New York with the square-wheeled bicycle. 

 

 

 

 

Illustration 2: Scheme that exemplifies the path of a square wheel through a plane full of sections of catenaries. 

The curves of the road through which the bicycle must pass is determined by several sections of 
catenaries, which take into account the rotation of the wheel. Hall and Wagon (1992) showed that the 
expression of this curve for k-sided polygons was determined by: 

 

𝜙(𝑥) =

−2	𝑎𝑟𝑐𝑡𝑎𝑛	
⎝

⎛𝑒−𝑥 − 𝑘
71−𝑘2

⎠

⎞	

71−𝑘2

 

 

They indicated that the wheels of said “bicycle” cannot always be polygon-shaped, but rather geometric 
objects such as spirals, ellipses, cardioids, parabolas... 

As mentioned above, beyond the analysis of the areas left by the cyclogon, a study has not been 
established that expresses this as a Cartesian function that relates the angle at which the figure rotates, 
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with respect to the position of the point it generates the cyclogon. This is how the tools used for this 
were: 

 

● The equation of the circumference: 
 

Lehmann (1989) in his book "Analytical Geometry" mentions the ordinary equation of the circumference 
as: 

(𝑥 − ℎ); + (𝑦 − 𝑘); = 𝑟;	
Being the point G = (h, k) the coordinates of the center of the circumference, and r its radius (Pag 99). 

 

● Sine theorem: 

This is defined because the sides of a triangle are proportional to the sines of the opposite angles (Baldor, 
2004). The expression that expresses this relationship is: 

 

𝑎
𝑠𝑖𝑛	(𝐴)	

=
𝑏

𝑠𝑖𝑛	(𝐵)	
=

𝑐
𝑠𝑖𝑛	(𝐶)	

	

 
Being: 

 

 
Illustration 3: In any type of triangle, this theorem can be applied. 

 
● Arc of circumference with respect to its angle and radius: 

Baldor (2004) announces that the measure of a circumference arc or circumference section is found by 
multiplying the radius of the circumference with the angle that determines the circumference section in 
radians, in this way the measure of the circumference arc is obtained: 
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Illustration 4: The measure of the arc of circumference (l) is given by l = Ω r, with 𝛺 in radians. 

 

● Length of a curve: 

Purcell, Varberg and Rigdon (2007), mention that: 

 

Let f be continuously differentiable in [𝑎, 𝑏]. For each x in (𝑎, 𝑏), define 𝑠(𝑥)like: 

𝑠(𝑥) = F
G

H
I1 + [𝑓L(𝑢)];𝑑𝑢

	

Then, s(x) gives the length of the arc of the curve f(u) from the point (a, f (a)) to (x, f (x)), then, by the 
fundamental theorem of calculus we have that : 

𝑠L(𝑥) = 	
𝑑𝑠
𝑑𝑥 =

I1 + [𝑓L(𝑢)]; = O1 + P𝑑𝑦
𝑑𝑥
Q
;	

 
So, the arc length differential can be written as: 

𝑑𝑠 = O1 + P𝑑𝑦
𝑑𝑥
Q

2

𝑑𝑥
 

 

(pg. 298) 

 

● Slope of the angle-generating segment in the unit circle 
 

The slope of a line is the tangent of the angle of inclination. In these conditions 𝑚 = 𝑡𝑎𝑛	𝜃, being 𝜃the 
angle of inclination, and m the slope of the line. The slope of the line through two points 𝑃(𝑥T, 𝑦T), and 
𝑄 = (𝑥;, 𝑦;), is: 

𝑚 =
𝑦; − 𝑦T
𝑥; − 𝑥T

= 𝑡𝑎𝑛	𝜃		

(Kindle, 1969. Pg. 2) 
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● Equation of a line 

 

Sullivan (2006) indicates that the slope of a line that passes through two different points 𝑃(𝑥T, 𝑦T), and 
𝑄 = (𝑥;, 𝑦;), with 𝑥T ≠ 𝑥;,is defined as: 

𝑚 =
𝑦; − 𝑦T
𝑥; − 𝑥T

	

If 𝑥T = 𝑥;it is a vertical line, and the slope would not be defined. (pg. 181) 

 

In this way, the equation of a line with slope m, and b as intersection with the y-axis is (also called, slope-
ordered form of a line): 

𝑦 = 𝑚𝑥 + 𝑏  

 (pg. 187) 

 

Given these tools, we proceed to the explanation of obtaining the Cartesian function for the cyclogon 
curve with regular polygons of n sides. 

 

 

3. Generalization of the Cartesian coordinates of the Cyclogon 

 

The cycloid arises in the same way that a large part of geometric curves arise, due to the movement of 
circles. This is how it is formed with the geometric place, or trace that leaves a single point on some part 
of a circumference, when it is moving on a horizontal plane. 

 

 

Illustration 5: Representation of obtaining a cycloid, together with its parametric equations. 
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Now, to know what a cyclogon is, we have to imagine that, instead of a circle rotating on the horizontal 
plane, it was a polygon with n number of sides. 

The initial positions of the polygons will be "standing" by one of their vertices perpendicular to the 
horizontal axis, as follows: 

 

 

 

Illustration 6: Example of initial position of the polygon to obtain the curve. 

 

 

Illustration 7: Cyclogon generated by a regular hexagon. 

 

Now, to begin modeling this situation, the center of the polygon must be taken into account, since, as in 
the cycloid, the center of the circumference is the one that helps parameterization and analysis due to the 
rotation it performs around its axis. But in this case, the center of the polygon does not travel in a straight 
line like the cycloid, parallel to the horizontal axis: 
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Illustration 8: Path left by the center of the polygon (red color) created by circumference sections. 

The curved path in red is the one that leaves the center of the hexagon. They are clearly arcs of 
circumference whose radius is the distance that exists between the center of the polygon and one of its 
vertices (this will be the radius that will be taken into account later). In this way the question that arises 
is, how to model this curved path? 

For this, the general equation of half a circle given its center (for positive quadrants in y) will be taken 
into account, 

𝑓(𝑥) 	= 	I(𝑟; − (𝑥 − ℎ);) + 	𝑘	

 

Which follows from the ordinary equation of the circumference given by Lehmann (1989); where C = 
(h, k) which is the center of the half circle. On the other hand r will always be constant according to the 
regular polygon that is had and also the measure of its sides, in this way the expression that relates these 
elements thanks to Baldor (2004) is: 

𝑟 =
𝑙 ∙ 𝑠𝑖𝑛	 P90(𝑛 − 2)𝑛 Q	

𝑠𝑖𝑛	 [360𝑛 ^			
	

	

Being 

l = The measure of one of the sides of the polygon 

n = Number of sides of the polygon 

 

The generalization of the curved path for a polygon with n sides would be as follows: 

Being k = 0 because the centers are on the x axis. 

 

 

𝑔`(𝑥) 	= 	I(𝑟; − (𝑥 − ℎ);), such that − a
;
< 𝑥	 ≤ 	0𝑙 + a

;
, ℎ = 0 

𝑔T(𝑥) 	= 	I(𝑟; − (𝑥 − ℎ);), such that 0𝑙 + a
;
< 𝑥	 ≤ 	1𝑙 + a

;
, ℎ = 𝑙 

𝑔;(𝑥) 	= 	I(𝑟; − (𝑥 − ℎ);),  such that 	1𝑙 + a
;
< 𝑥	 ≤ 	2𝑙 + a

;
, ℎ = 2𝑙 
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𝑔d(𝑥) 	= 	I(𝑟; − (𝑥 − ℎ);), such that 2𝑙 + a
;
< 𝑥	 ≤ 	3𝑙 + a

;
, ℎ = 3𝑙 

𝑔e(𝑥) 	= 	I(𝑟; − (𝑥 − ℎ);), such that 3𝑙 + a
;
< 𝑥	 ≤ 	4𝑙 + a

;
, ℎ = 4𝑙 

… 

This is repeated n times, n being the number of sides of the polygon, since a cycle would be fulfilled, the 
expression would be as: 

𝑐(𝑥) = ⋃hi`		
j 𝑔h(𝑥) = I(𝑟; − (𝑥 − ℎ);), 𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	(𝑚 − 1)𝑙 +

𝑙
2 <

𝑥	 ≤ 	𝑚𝑙 +
𝑙
2 ,
ℎ = 𝑚𝑙

	

With 𝑚 ∈ 	𝑍 

 

 

 

Illustration 9: The complete circles from which the path of the center of the polygon (H) arises. 

 

Illustration 10: Point curved path of the center of the polygon (H) in a complete 360 ° rotation 
(omitting the negative piece). 

 

In this way, we have the path of the center of any regular polygon, therefore, we can give way to knowing 
how to find the exact position of the point which is going to leave the trace of the cyclogon (G) with 
respect to the angle of rotation of the polygon (𝛷). Therefore, it will be done in the following way: 

As the initial position of the polygon is "standing", there is an angle 𝛷 that arises from the rotary 
movement of the polygon on the horizontal plane, with respect to this angle, the angles that are greater 
than this will be positive, and the smallest negative, is trivial, however, this will be taken into account to 
know the exact position of the point G belonging to the polygon. 
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Let's say that the point G that the cyclogon is going to leave is located at -40° from the initial position 
𝛷= 0°(𝜔), so what would be its distance to the center (GH)? This would be a fixed position that is key 
in the system, despite the angle 𝛷 when it elapse: 

 

 

Illustration 11: Position of the generator point G of the cyclogon from an initial angle ω of -40 ° 

 

Generalizing for a polygon with n number of sides, the distance between G and the Center H (distance 
𝜆), would be given by the following analysis: 

● If |𝜔| = 𝑚[360°
𝑛
^, with 𝑚 ∈ 𝑁 , then the distance GH (𝜆) es equal to 𝑟. 

● If |𝜔| ≠ 𝑚[360°
𝑛
^, with 𝑚 ∈ 𝑁, then: 

 

� If 0 < |𝜔| < [360°
𝑛
^ ,thanks to the sine theorem (Baldor, 2004) the equation is applied: 

𝜆 = 𝐺𝐻 =	
𝑠𝑖𝑛	 [90(𝑛 − 2)𝑛 ^ 	𝑟

𝑠𝑖𝑛	 t180 − v|𝜔| + [90(𝑛 − 2)𝑛 ^wx	

	

 

Where n = Number of sides of the polygon 

It should be noted that, as the initial position of the polygon is symmetric, it does not matter if ω is 
positive or negative, the sign only indicates the direction where the point G is with respect to the angle 
𝛷 (A’’’HT). Solving the equation for the given hexagon we have λ = GH≈1.76. 
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Illustration 12: The angle ω when it is negative (A’’’HG), and when it is positive 𝐴’’’𝐻𝑂T   (𝜓) 

 
� But if [360°

𝑛
^ < |𝜔|, the following operation is performed: 

|𝜔| ÷	
360
𝑛
	

 
The result must be expressed as a mixed number of the form 𝑞 ~

�
, with 𝑞, 𝑛	𝑦	𝑝 ∈ 𝑍, 𝑦	𝑝 ≠ 0 

Then the proper fraction belonging to the mixed number is multiplied ~
�
	by d�`

j
: 

 
𝑠
𝑝 ∙
360
𝑛 = 𝛿

	

Then simply apply: 

𝜆 = 𝐺𝐻 =
𝑠𝑖𝑛	 [90(𝑛 − 2)𝑛 ^ 	𝑟

𝑠𝑖𝑛	 t180 − v𝛿 + [90(𝑛 − 2)𝑛 ^wx	

	

In this way you can find any distance between point G and the center of the polygon (H). 

 

Now the relationship between the angle (𝛷), which is the independent variable of the system, must be 
established with the x axis with respect to the centers of the polygon in order to know that, when the 
angle has a certain value, what would be the position of the center of the polygon and vice versa; This is 
how it is taken into account that the angles belonging to the circumference arcs of the center function 
c(x) also indicate the rotation of the figure, that is, if the figure has rotated 100 degrees (in the case of 
the hexagon), then the center of the polygon will be located in the third “mountain”, because, since the 
first, as it is half, would be 30°, the second has 60°, and the other also has 60°, that is, the center would 
be located there: 
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Illustration 13: When the angle Φ has 100 °, it will be located in the third "mountain" of the function 

c(x), each of those "ice cream cones" has an angle of d�`°
j

. 

In this way, each of the "mountains" represents the angle 360°, so a relationship between the distance of 
each arc with respect to the angle can be implemented, and thus the position of the center would be 
involved. 

 

Illustration 14: Angles of the "ice cream cones" in a regular nonagon. 

The equation that involves the measure of an arc with respect to the multiplication between the angle and 
the radius of the circular section will be applied (Baldor, 2004), together with the curve length formula 
(Purcell, Varberg and Rigdon, 2007) is obtained: 

 

 
● The angle 𝛷 must be in radians. 
● Being also 𝑐L(𝑥) = ��G

I���(��G)�
  

 

𝛷 ∙ 𝑟 = F
𝑥

0

71 + (𝑐′(𝑥))2𝑑𝑥
	

Then, clearing 𝛷, we have: 
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𝛷 =
∫𝑥0 71 + (𝑐′(𝑥))2𝑑𝑥

𝑟

	

Therefore, when x is cleared from the equation, we find the value of x belonging to the coordinate of the 
center of the polygon (H) with respect to the angle 𝛷. Next, the respective equations are shown for each 
section of motion of the polygon , or for each "mountain": 

 

 

𝛷 ∙ 𝑟 = ∫𝑥0 71 + (𝑐′(𝑥))2𝑑𝑥
 , con: 

0 < 𝛷	 ≤ 0 [�`(j�;)
j

^+
[��(���)

�
^

;

 

𝛷 ∙ 𝑟 = ∫𝑥𝑙
2

71 + (𝑐′(𝑥))2𝑑𝑥
 , con: 

0 [�`(j�;)
j

^ +
[��(���)

�
^

;
< 𝛷 ≤ 1[�`(j�;)

j
^ +

[��(���)
�

^

;

 

𝛷 ∙ 𝑟 = ∫𝑥
𝑙+𝑙2

71 + (𝑐′(𝑥))2𝑑𝑥
, con: 

1 [�`(j�;)
j

^ +
[��(���)

�
^

;
< 𝛷 ≤ 2[�`(j�;)

j
^ +

[��(���)
�

^

;

 

𝛷 ∙ 𝑟 = ∫𝑥
2𝑙+𝑙2

71 + (𝑐′(𝑥))2𝑑𝑥
, con: 

2 [�`(j�;)
j

^ +
[��(���)

�
^

;
< 𝛷 ≤ 3[�`(j�;)

j
^ +

[��(���)
�

^

;

 

𝛷 ∙ 𝑟 = ∫𝑥
3𝑙+𝑙2

71 + (𝑐′(𝑥))2𝑑𝑥
, con: 

3 [�`(j�;)
j

^ +
[��(���)

�
^

;
< 𝛷 ≤ 4[�`(j�;)

j
^ +

[��(���)
�

^

;

 

... 

So, a respective correspondence is made between the function of the center c(x), with the relationship 
established between the principal angle 𝛷 and the x coordinate of H ((x) H): 

𝑐(𝑥) Relation between 𝛷 and (𝑥)𝐻 
𝑔`(𝑥) 	= 	I(𝑟; − (𝑥 − ℎ);), such that: − a

;
<

𝑥	 ≤ 	0𝑙 + a
;
, ℎ = 0 

 

𝛷 ∙ 𝑟 = ∫𝑥0 71 + (𝑐′(𝑥))2𝑑𝑥
 , with:  

0 < 𝛷	 ≤ 	0v
90(𝑛 − 2)

𝑛
w +

v90�𝑛−2�𝑛 w

2

 

 
𝑔T(𝑥) 	= 	I(𝑟; − (𝑥 − ℎ);), such that: 0𝑙 +
a
;
< 𝑥	 ≤ 	1𝑙 + a

;
, ℎ = 𝑙 

 

𝛷 ∙ 𝑟 = ∫𝑥𝑙
2

71 + (𝑐′(𝑥))2𝑑𝑥
 , with: 0 [�`(j�;)

j
^ +

[��(���)
�

^

;
< 𝛷	 ≤ 	1 [�`(j�;)

j
^ +

[��(���)
�

^

;

 

 
𝑔;(𝑥) 	= 	I(𝑟; − (𝑥 − ℎ);),  such that: 	1𝑙 +
a
;
< 𝑥 ≤ 	2𝑙 + a

;
, ℎ = 2𝑙 

 

𝛷 ∙ 𝑟 = ∫𝑥
𝑙+𝑙2

71 + (𝑐′(𝑥))2𝑑𝑥
, with: 1 [�`(j�;)

j
^ +

[��(���)
�

^

;
< 𝛷	 ≤ 	2 [�`(j�;)

j
^ +

[��(���)
�

^

;

 

 
𝑔d(𝑥) 	= 	I(𝑟; − (𝑥 − ℎ);), such that: 2𝑙 +
a
;
< 𝑥	 ≤ 	3𝑙 + a

;
, ℎ = 3𝑙 

 

𝛷 ∙ 𝑟 = ∫𝑥
2𝑙+𝑙2

71 + (𝑐′(𝑥))2𝑑𝑥
, with: 2 [�`(j�;)

j
^ +

[��(���)
�

^

;
< 𝛷	 ≤ 3 [�`(j�;)

j
^ +

[��(���)
�

^

;
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𝑔e(𝑥) 	= 	I(𝑟; − (𝑥 − ℎ);), such that: 3𝑙 +
a
;
< 𝑥	 ≤ 	4𝑙 + a

;
, ℎ = 4𝑙 

 

𝛷 ∙ 𝑟 = ∫𝑥
3𝑙+𝑙2

71 + (𝑐′(𝑥))2𝑑𝑥
, with: 3 [�`(j�;)

j
^ +

[��(���)
�

^

;
< 𝛷	 ≤ 4 [�`(j�;)

j
^ +

[��(���)
�

^

;

 

 
 

Generalizing with m∈Z, where n is the number of sides of the regular polygon, and l is the measure of 
the side of the polygon: 

 
 

𝑐(𝑥) = ⋃hi`
j 𝑔h(𝑥) = I(𝑟; − (𝑥 − ℎ);),	

𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	(𝑚 − 1)𝑙 +
𝑙
2 <

𝑥	 ≤ 	𝑚𝑙 +
𝑙
2 ,
ℎ = 𝑚𝑙

	

𝛷 ∙ 𝑟 = ∫𝑥(𝑚−1)+𝑙2
71 + (𝑐′(𝑥))2𝑑𝑥

, with: (𝑚 −

1) [�`(j�;)
j

^ +
[��(���)

�
^

;
< 𝛷	 ≤	

 

𝑚[�`(j�;)
j

^+
[��(���)

�
^

;

  

 

 

In this way, given the independent variable 𝛷, we can get to know the exact position of point H, that is, 
the center of the regular polygon. 

Now, the last thing to know is the exact coordinates of point G. Therefore, it is convenient to know what 
is the slope of the line that marks the angle 𝛷 (A'''H), to later know the slope of the line GH that marks 
the angle 𝜔. In this way, to know the slope of the line A’’’H is easy since it would be of the form: 

 

𝑚T = 𝑡𝑎𝑛	(90 − 𝛷)	, with 𝛷 in degrees (Kindle, 1969) 

In this way the slope of GH is: 

𝑚; = 𝑡𝑎𝑛	((90 − 𝛷) + 𝜔)	, with 𝛷 in degrees; although there is a small conditional of the sign to the 
left of the angle ω. This is positive if it goes counterclockwise with respect to line A’’’H, and is negative 
otherwise, something that had been mentioned in Illustration 11. 
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Illustration 15: Slopes of segments A'''H and GH, with respect to angle 𝛷 and 𝜔. 

 

In this way, the function of the line that passes through G and H (Sullivan, 2006) is: 

𝑠(𝑥) = 𝑚;𝑥 + (𝑐(𝑥) −𝑚;𝑥)	

𝑠(𝑥) = 𝑡𝑎𝑛	�(90 − 	𝛷) ± 	𝜔�	𝑥 + [𝑐(𝑥) − �𝑡𝑎𝑛	�(90 − 	𝛷) ± 	𝜔�	(𝑥)𝐻� 	̂

 

� (𝑥(𝐻)) is the x coordinate of H as indicated above; remember that it can be found thanks to 
the angle. 

On the other hand, since the exact distance between HG is known, the general equation of the half 
circumference (Lehmann, 1989), which has as center H and radius HG, is equated with the equation of 
the line that passes through G and H, This is how we will know the coordinates of point G: 

 

7𝜆; − ((𝑥)𝐻 − 𝑥); + 𝑐(𝑥) = 𝑡𝑎𝑛	�(90 − 	𝛷) ± 	𝜔�	𝑥 + [𝑐(𝑥) − �𝑡𝑎𝑛	�(90 − 	𝛷) ± 	𝜔�	(𝑥)𝐻�^
	

𝑥 = (𝑥)𝐻 − 𝜆	𝑐𝑜𝑠	�(90 − 	𝛷) ± 	𝜔� 	= (𝑥)𝐺	
This is how we obtain the x-coordinate of point G. To find the y-coordinate ((𝑦)𝐺) simply replace the 
value of x in 𝑠(𝑥). 

In this way, the coordinates of the point that generates the locus of the cyclogon for a regular polygon 
with n number of sides is: 

𝐺 = P[(𝑥)𝐻 − 𝜆	𝑐𝑜𝑠	�(90 − 	𝛷) ± 	𝜔�	^ , �𝑠(𝑥)�Q	
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Illustration 16: Cyclogon generated by a regular hexagon with l = 2, the coordinates of G, H, angles 𝛷 
and 𝜔, and the measure of 𝜆	(GH). 

 

 

Illustration 17: Cyclogon generated by a regular nonagon with l = 2, indicating the coordinates of G, H, 
the angles 𝛷 and 𝜔, and the measure of 𝜆	(GH). 

 

 

Illustration 18: Cyclogon generated by a regular dodecagon, indicating the coordinates of G, H, angles 
𝛷 and 𝜔, and the measure of 𝜆 (GH). 
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4. Conclusions 

Obtaining the Cartesian expression of point G was certainly not an easy task, since several theorems and 
elements were involved that helped to cement the reasoning, however this result brings with it a series 
of conclusions derived from the process, among them it is obtained that : 

Each time the regular polygon has more sides, the cyclone will look more and more like a cycloid. It is 
very similar to what happens in the exhaustion method carried out by Archimedes, since each time you 
have a regular polygon with a greater number of sides, it will look more like a circumference, this is how 
the cyclogon will tend to be each time plus a cycloid as the sides of the polygon increase. 

One essential thing is that, if you want the G point to be outside or inside the polygon, you only have to 
increase or decrease the GH measure, call this measure Kiu. In this way, more complex cyclogons will 
be generated, but clearly, the more sides the polygon has, these trajectories will look like those left by a 
circular figure, with a G position greater or less than its radius. 

It is important to mention that the total distance of a rotation that any regular polygon with n sides travels 
on the x axis when the cyclogon is generated is equal to the measure of its perimeter, in addition to being 
related to the 360 ° belonging to the rotation around the angle until it gets there. 

Another thing is that the angle that determines the G point could be only negative, or if you want only 
positive, since it could cover the entire polygon in a complete rotation, that way the G point could be 
anywhere in the polygon . 

The study of these curves contributes to a deeper understanding of their properties, which is easier if it 
is given in the Cartesian way because it is closer to the current forms of mathematical modeling and 
analysis, which is Analytical and Dynamic Geometry, for This establishes the Cartesian equations for 
later analysis in different fields. Also because their knowledge contributes to mechanics, in the same 
applications of the cycloid, but in more complex situations, together with physics, which acquires an 
important role for a subsequent analysis of its properties in the palpable world. 

It can be noted that the infinite repetitions, or the cycles have a lot to do with what is found in the 
modeling of the cycloid, it reminds us of those fractal forms which are founded on certain structures of 
the universe, so it is convenient to continue with the modeling the world, although clearly we will never 
know everything about it. 
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