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Abstract

Among the multiples applications of Bernstein polynomials there is one related to the processing of random signals,
originally introduced by John von Neumann in 1956. Thanks to advances in technology, some ideas from the late
sixties of the last century have been retaken in order to design implementations which allow -in certain cases- a
simpler and more efficient processing than the traditional one. In this descriptive review article we will illustrate
the use and importance of Bernstein polynomials in solving problems associated with stochastic computing, taking
as a starting point the notion of stochastic logic in the sense of Qian-Riedel-Rosenberg.
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Resumen

Entre las aplicaciones de los polinomios de Bernstein se encuentra el procesamiento de señales aleatorias, original-
mente presentado por John von Neumann en 1956. Gracias a los avances de la tecnologı́a se han podido retomar
algunas ideas -de finales de los años sesenta del siglo pasado- para diseñar implementaciones que permiten un
procesamiento más simple y eficiente que el tradicional en determinados casos. En este artı́culo de revisión des-
criptiva ilustraremos el uso e importancia de los polinomios de Bernstein en la resolución de problemas asociados
a la codificación estocástica de la información, tomando como punto de partida la noción de lógica estocástica en el
sentido de Qian-Riedel-Rosenberg.

Palabras claves: codificación estocástica de la información, lógica estocástica, polinomios de Bernstein.
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1. Introducción

As B.R. Gaines pointed out in [9], the invention of the steam engine in the late eighteenth century
allowed the replacement of the muscle-power of men and animals by the motive power of machines.
While, the invention of the stored-program digital computer during the second world war made it pos-
sible to replace the lower-level mental processes of the human being (such as arithmetic computation
and information storage), by electronic data-processing in machines [36, 37].

In the mid-twentieth century, Boolean algebras were of great practical importance, which was increa-
sing until today, mainly in the management of digital information. The first computers were composed
of decimal numbering system, but in 1930 John von Neumann proposed replacing the decimal numbe-
ring system with a binary numbering system, which as we know, is nothing more than a system based
on symbolic logic introduced by Boole [11, 12]. With this binary numbering system, von Neumann was
able to state the architecture model that defines the internal structure of computers since the first gene-
ration and with that, the era of digital computing began. In 1936, Alan Turing used Boolean algebras
theoretically, in his design of the Turing [35] machine.

By the end of the sixties of twentieth century we had reached the stage in which it was reasonable
to contemplate replacing some of the higher mental processes of the human being, such as the ability to
recognize patterns and to learn, with similar capabilities in machines. However, the technology needed
to ‘infuse the gift of learning and recognition of patterns to a machine’was lacking. Nowadays, and with
well-defined levels or stages of development, we are still immersed in a real technological transforma-
tion [3, 4, 18, 19, 20, 34, 38, 39].

In the summer of 1965 some research teams working on these topics, independently discovered a
new form of computer (or coding structure) which seemed to provide the necessary technology to in-
troduce learning and pattern recognition in machines [6, 7, 8, 9, 24, 31]. The stochastic computer, as this
coding structure has come to be called, was not the final answer to the technological problems of lear-
ning and pattern recognition. Although, it did allow progress in the direction of processing by parallel
structures similar to those of the human brain, and is of great interest in itself as a novel addition to
the family of basic computing techniques, and as a system which uses what is generally considered as a
disposable product: the random noise (cf. [1, 2, 3, 10, 15, 25, 27, 34] and the references therein).

Figura 1: Stochastic Computing.

Thus stochastic computing (SC) arose, as a collection of techniques to represent analog quantities by
probabilities of discrete events, or represent continuous values by means of random bit-streams, so that
complex operations can be performed by simple bitwise operations on random pulse trains1. In Spanish,
the term ‘stochastic computing’might present some confusion with the term ‘stochastic calculus’, so it

1The bits are closely linked to the processing of random signals, originally presented by J. von Neumann in [37]. Bit is the
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is worthy to mention these terms are very different. Some authors also use the terms ‘stochastic arith-
meticór ‘stochastic coding of the information’to refer to stochastic computing, as illustrated in Figure 1.
Also, despite the similarity of their names stochastic computing is different from the study of random
algorithms.

The analogy between probability algebras and Boolean algebras [11, 12, 13] is used to obtain very
simple processing units and an adequate arithmetic. The basic operations described in the literature
are the addition and the multiplication since these are the fundamental operations involved in neural
networks and in the design of stochastic circuitry (fields in which fertile ground has been found for
applications of SC). Fortunately, the advancement of technology in relation to programmable devices
has allowed to retake those ideas from the sixties of the last century for reaching implementations.
These implementations, being totally digital, allow a stochastic processing, which is much simpler and
more efficient than the traditional calculation in certain cases [1, 2, 3, 15, 18, 25, 27, 34, 38, 39].

In this descriptive review article we will illustrate the use and importance of Bernstein polynomials
in solving problems associated with stochastic computing, taking as a starting point the notion of sto-
chastic logic in the sense of Qian-Riedel-Rosenberg [25, 28].

2. Stochastic numbers

The information stored on a computer is measured, encoded and transmitted as a finite sequence of
switches (‘on’represents one and ‘off’represents zero) which are represented by bits. For instance, file
sizes and transfer rates are measured in bits. In general, all information entered in the language of the
user is converted into bits for the computer ‘understands it’. Bits are also used to classify the colors in
an image. For example, a monochrome image has 1 bit at each point (white or black), while a 8 bit image
supports up to 28 = 256 colors. For systems of 32 or 64 bits, these numbers indicate the capacity of the
computer for processing the size of the data types that it handles and the size of its registry all at once
(i.e., in a single cycle of the processor). Also, they usually can mean the amount of bits used to represent
an address in the computer memory.

A stochastic number can be defined as a pair (x, px), where x a finite binary sequence, i.e., x ∈ {0, 1}N ,
for some N ∈ N and px ∈ [0, 1] is the probability of observing a 1 at an arbitrary position of x, [1, 8, 9, 20].
So, a stochastic number is represented by a finite binary sequence (or bit-stream) in such a way that the
probability (ratio) of ‘1ı́n the binary sequence is interpreted as the number itself. Some authors call to
the probability px value of the stochastic number (see, e.g., [20]).

For example, if N = 16 the following pairs of finite binary sequences and probabilities represent
stochastic numbers:

x = (0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1) 7−→ px =
12
16

=
3
4
,

y = (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 7−→ py =
12
16

=
3
4
.

Note that although x , y, their associated probabilities coincide. Hence, the pairs (x, px) and (y, py) re-
present the same stochastic number. Neither the length nor the structure of a finite binary sequence x
need be fixed; for example, the probability p = 1

4 is associated with the binary sequences xp = (1, 0, 0, 0),
yp = (0, 1, 0, 0) and zp = (0, 1, 0, 0, 0, 1, 0, 0), so the stochastic numbers (xp, p), (yp, p) and (zp, p) have the
same value, that is,

(xp, p) = (yp, p) = (zp, p).

If (x, px) is a stochastic number whose binary sequence x has N components, of which m are equal to
1 and N−m are equal to 0, then px = m

N and, clearly, the representation of the pair (x, px) is not unique. SC
uses a redundant number system in which there are

(
N
m

)
possible representations for each value px = m

N .
Furthermore, a binary sequence x can only has associated probabilities in the set {0, 1

N ,
2
N , . . . ,

N−1
N , 1}, so

only a small subset of the real numbers in [0, 1] can be expressed exactly in SC.

acronym for the English expression ‘Binary Digit’. In 1948 the term bit was used by the engineer Claude Shannon in his article
[33] to designate the binary digit. Several bits combined with each other, give rise to the other information units of a computer:
byte, megabyte, gigabyte, terabyte, etc.
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The construction of arithmetic operations between stochastic numbers depends on the arithmetic
operations that can be defined on the Boole algebras {0, 1} (Z2) or {0, 1}N (ZN

2 ), where Z2 and N denote the
integers modulo 2 and the length of the finite binary sequence, respectively [12, 13, 21]. For example, the
multiplication of elements in {0, 1} (an also in Z2) can be expressed by tabulating their values as follows

∗ 0 1
0 0 0
1 0 1

Tabla 1: Multiplication of elements in {0, 1}.
This multiplication also represents the logical conjunction on two logical values (typically the values

of two propositions: True=1 and False=0). In advanced programming and digital electronics the logical
conjunction is usually represent by the AND gate2. In this case, the multiplication in Table 1 is extended
componentwise (i.e., bitwise) giving rise to the multiplication of binary sequences as follows.

(a) Multiplication of the sequences x and y.

(b) Multiplication of the sequences u and v.

Figura 2: AND gate used as a stochastic multiplier.

Note that the multiplication of binary sequences x and y of Figure 2(a) is compatible with the product
of the probabilities associated with them, that is,

px py =

(
3
4

)2

=
9

16
= 0,5625 = pz = px∗y.

For this reason, the operation above is usually called mutiplication of the stochastic numbers (x, px) and
(y, py). Figure 2(b) shows another two possible alternatives for representing the binary sequences corres-
ponding to the stochastic numbers (x, px) and (y, py), i.e., (x, px) = (u, pu) and (y, py) = (v, pv), respectively.
In this case, the result w = u AND v = u ∗ v has associated probability pw = 1

2 = 0,5, which can be
interpreted as an approximation to the value pz = 0,5625.

On the other hand, variations in the representations of the processed binary sequences could yield
some inaccuracy. For instance, an extreme case occurs when the AND gate is used as a stochastic mul-
tiplier of the same pair (x, px): the compatibility between the multiplication of the binary sequences and
the product of their associated probabilities is lost, since z = x AND x = x ∗ x = x, and hence, pz = px = 3

4 ,
rather than the numerically correct product pz = (px)2 = 9

16 . In order to avoid inaccurate results in [22]
was introduced the notion of correlation: for fixed N ∈ N, two binary sequences u, v ∈ {0, 1}N are said
independent (or uncorrelated) if and only if

〈u, v〉 =
‖u‖1‖v‖1

N
, (1)

2A logic gate is an idealized or physical device performing a logical operation on one or more binary inputs and produces a
single binary output.
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where 〈· , ·〉 y ‖ · ‖1 denote the usual inner product and the l1 norm on RN , respectively. Two binary
sequences u, v ∈ {0, 1}N not satisfying (1) are called correlated. In Figure 2(a) the binary sequences x, y are
independent, hence px∗y = px py. While the sequence x is correlated with itself, and the binary sequences
u, v of Figure 2(b) also are correlated.

For the definition of the addition the logical disjunction (OR gate) and the exclusive logical disjun-
ction (XOR gate) are commonly used. For example, the OR and XOR gates allow us to implement the
following sums of elements in {0, 1}:

+ 0 1
0 0 1
1 1 1

⊕ 0 1
0 0 1
1 1 0

Tabla 2: Additions of elements in {0, 1} induced by OR and XOR gates.
Proceeding as before, the additions in Table 2 can be extended bitwise giving rise to two additions of

binary sequences as follows.

(a) Addition x + y of the sequences x and y.

(b) Addition x ⊕ y of the sequences x and y.

Figura 3: OR and XOR gates used as stochastic adders.

Another usual operation is the logic negation, which is implement by the NOT gate:

A ¬A
F V
V F

Input ¬

0 1
1 0

Tabla 3: Logic negation (¬) of the proposition A and the NOT gate.
The logic negation of Table 3 can be extended bitwise as is illustrated in the next figure.

Figura 4: NOT gate used as a stochastic inverter.

All logic gates, except the NOT gate, can have more than two inputs. The interested reader may con-
sult [32] for a detailed description of the logic gates AND, OR, XOR, NOT, NAND and NOR. Again, the
compatibility between the addition of the binary sequences and the sum of their associated probabili-
ties is lost. For example, in Figure 3(b) the addition x + y has an associated probability px+y = 15

16 , while
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px + py = 3
2 < [0, 1]. As we know, this incompatibility comes from the fact that the sum of two numbers in

[0, 1] belongs to [0, 2]. To attempt to correct this incompatibility, SC introduces a special sum called scaled
addition, as follows: Let us consider (u, pu) and (v, pv) stochastic numbers with u, v ∈ {0, 1}N . Let (w, pw) be
a fixed stochastic number with w ∈ {0, 1}N , which we call control input. The scaled addition of (u, pu) and
(v, pv) is defined as the stochastic number whose binary sequence and associated probability are given
by

u �w v := (u ∗ w) + (v ∗ (¬w)), pu�wv := pu pw + pv(1 − pw). (2)

For instance, if N = 16 let us consider the following stochastic numbers:

r = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0) 7−→ pr =
7

16
,

y = (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 7−→ py =
12
16

=
3
4
,

and the control input

w = (1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0) 7−→ pw =
8
16

=
1
2
.

Using (2) we obtain that the binary sequence and associated probability of the scaled addition of (r, pr)
e (y, py) are

z = r �w y = (1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1),

pr�wy = pr pw + py(1 − pw) =
1
2

(
7
16

+
3
4

)
=

19
32

= 0,5937.

It is important to point out that the binary sequence z = (1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1) has nine
components equal to 1, so that its associated probability is

pz =
9

16
= 0,5625.

Consequently, the probability pr�wy = 0,5937 can be interpreted as an approximation to pz. Figure 5 uses
a multiplexer3 to illustrate the representation of the scaled addition in digital electronics.

Figura 5: Implementation of scaled addition using a multiplexer.

For N = 8 the next example given in [1] shows that pz and pr�wy coincides. Consider the stochastic
numbers:

r = (1, 1, 1, 1, 1, 0, 1, 1) 7−→ pr =
7
8
,

y = (0, 0, 1, 0, 0, 1, 1, 0) 7−→ py =
3
8
,

3A multiplexer is a combinational circuit with several inputs and a unique output. It is endowed with one or several fixed
inputs (called control inputs) capable to choose one and only one of the data inputs in order to allow the transmission from the
chosen input to such a output [32].
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and the control input

w = (1, 0, 0, 1, 0, 1, 0, 1) 7−→ pw =
4
8

=
1
2
.

By (2) the binary sequence and associated probability of the scaled addition of (r, pr) and (y, py) are

z = r �w y = (1, 0, 1, 1, 0, 0, 1, 1),

pr�wy = pr pw + py(1 − pw) =
1
2

(
7
8

+
3
8

)
=

5
8

= pz.

The previous examples show a key problem in SC: How do we generate ‘good’stochastic numbers for
a particular application? One manner used for solving this problem has been of design of circuits that
convert binary numbers to stochastic numbers, and vice versa. These number conversion circuits are
called stochastic number generators (SNG). The main function of SNGs is to produce stochastic numbers
that are sufficiently random and independent, but they are not exempt to yield some inaccuracies (see
e.g., [1, 3, 9, 20, 32, 38]).

In addition to the basic operations of multiplication and addition, SC has been applied to division
and square-rooting [9, 34], matrix operations and decoding of low-density parity check (LDPC) codes
[10, 14, 17], and polynomial arithmetic [25, 28].

3. Stochastic logic of Qian-Riedel-Rosenberg and Bernstein polynomials

The main idea behind the combinational circuits design with polynomial arithmetic of Qian et al.
[25, 28] consist of:

(1) Take advantage -in a suitable way- of the redundancy provided by SC for choosing binary sequen-
ces x ∈ {0, 1}N corresponding to the value px, in order to make an association between x and a
certain N-tuple of independent random variables X = (X1, . . . , XN), where each component Xk has
Bernoulli distribution with some parameter pk ∈ [0, 1].

(2) Given a boolean function y = f (x1, . . . , xN) implementing a combinational circuit, use the asso-
ciation aforementioned for inducing a stochastic circuit implemented by a function of the form
Y = F(X1, . . . , XN) (see for instance, [21]).

Given N ∈ N and (x, px) a stochastic number with x ∈ {0, 1}N . For each k = 1, 2, . . . ,N we choose
pk ∈ [0, 1] and consider discrete and independent random variables Xk having Bernoulli distribution
with parameter pk, i.e., Xk ∼ Be(pk) (cfr. [21, 31]). Since xk ∈ {0, 1}, each probability density function is
given by

P{Xk = xk} = pxk
k (1 − pk)1−xk . (3)

We define

pXk := P{Xk = 1} = pk and 1 − pXk := P{Xk = 0} = 1 − pk, k = 1, 2, . . . ,N.

For example, for the stochastic numbers (x, px) and (y, py) of Figure 3(a) we can choose discrete and
independent random variables Xk ∼ Be(px) and Yk ∼ Be(py), for all k = 1, . . . , 16.

Let f : {0, 1}N → {0, 1} be any boolean function. Given (x, px) a stochastic number with x = (x1, . . . , xN) ∈
{0, 1}N , choose an N-tuple of discrete and independent random variables X = (X1, . . . , XN) such that
Xk ∼ Be(pk) for some pk ∈ [0, 1] and satisfying (3). We can associate to each y = f (x) = f (x1, . . . , xN) ∈ {0, 1}
a discrete random variable Y using that its probability density function is uniquely determined by the
given N-tuple X = (X1, . . . , XN). More precisely, for determining pY := P{Y = 1}we proceed as follows (cf.
[21]):

pY = P{Y = 1} =
∑

x1,...,xn: f (x1,...,xN )=1

P{X1 = x1, X2 = x2, . . . , XN = xN}

=
∑

x1,...,xN : f (x1,...,xN )=1

 N∏
k=1

P{Xk = xk}

 (4)

=
∑

x1,...,xN : f (x1,...,xN )=1

N∏
k=1

pXk , (5)
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The identity (4) is consequence of the independence of Xk, and (5) comes from

P{Xk = xk} =

{
pXk , if xk = 1,
1 − pXk , if xk = 0.

Furthermore, the random variable Y has Bernoulli distribution with parameter pY . So, the boolean
function f : {0, 1}N → {0, 1} induces a function F acting on the discrete and independent random varia-
bles X1, . . . , XN such that for each Y = F(X1, . . . , XN) we have

pY =
∑

x1,...,xN : f (x1,...,xN )=1

N∏
k=1

pXk .

Following [25, 28], we call stochastic logic or stochastic logic of Qian-Riedel-Rosenberg to the passage of
the boolean function y = f (x1, . . . , xN) to the function Y = F(X1, . . . , XN).

EXAMPLE 3.1. For N = 3, let us consider the boolean function f : {0, 1}3 → {0, 1} given by

f (x, y, z) = (x ∧ z) ∨ (y ∧ (¬z)) = (x ∗ z) + (y ∗ (¬z)).

Choose p1, p2, p3 ∈ [0, 1] and let X,Y,Z be three discrete and independent random variables such that X ∼ Be(p1),
Y ∼ Be(p2), Z ∼ Be(p3) whose probability density functions satisfy (3).

Let w = f (x, y, z) ∈ {0, 1}, since

{x, y, z ∈ {0, 1} : f (x, y, z) = 1} = {x, y, z ∈ {0, 1} : (x, y, z) ∈ {(0, 1, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)}},

then

pW = P{W = 1} =
∑

{x,y,z: f (x,y,z)=1}

P{s : X(s) = x,Y(s) = y,Z(s) = z}

= P{X = 0,Y = 1,Z = 0} + P{X = 1,Y = 1,Z = 0} + P{X = 1,Y = 0,Z = 1}
+P{X = 1,Y = 1,Z = 1}

= (1 − pX)pY (1 − pZ) + pX pY (1 − pZ) + pX(1 − pY )pZ + pX pY pZ

= pX pZ + pY (1 − pZ).

Hence,
pW = pX pZ + pY (1 − pZ), (6)

and the random variable W is given by

W = F(X,Y,Z) = XZ + Y(1 − Z). (7)

Note that both (6) and (7) induce the following polynomial in the variables (a, b, c) with integer coefficients:

F̂(a, b, c) = ac + b(1 − c).

Example 3.1 illustrates the next result.

THEOREM 1. (cf. [25, Theorem 1]). Given a boolean function f : {0, 1}n → {0, 1}. Stochastic logic yields a
polynomial in n variables F̂ given by

F̂(a1, . . . , an) =

1∑
i1=0

· · ·

1∑
in=0

αi1...in

n∏
k=1

aik
k

 , (8)

where the coefficients αi1...in are integers. Moreover, for each y = f (x1, . . . , xn) we have

pY = F̂(pX1 , pX2 , . . . , pXn ) =

1∑
i1=0

· · ·

1∑
in=0

αi1...in

n∏
k=1

pik
Xk

 . (9)
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If we preassign some variables of the polynomial F̂(a1, . . . , an) given in (8) as constant values in [0, 1]
and the rest of variables is taken equal to one variable t, then F̂ becomes a polynomial in one variable
and real coefficients g(t). Let us consider the polynomial of Example 3.1 with a = 0,3, b = 0,7 y c = t,
then:

g(t) = 0,7 − 0,4t.

Thus, different boolean functions f and preassigned variables will give rise to different polynomials g(t).
For particular combinational circuits whose stochastic logic yields a multivariate polynomial as in (8)
and for their corresponding associated polynomials g(t), the authors of [25] propose representations of
g(t) in terms of certain families of Bernstein polynomials. Before we look at these representations, we
will recall the definition and some algebraic and analytic properties of the Bernstein polynomials (cf.
[16, 28]).

For f : [0, 1]→ R continuous function, n ≥ 1 and x ∈ [0, 1], the nth Bernstein polynomial of f is given
by

Bn(t) = Bn( f ; t) :=
n∑

k=0

f
(

k
n

) (
n
k

)
tk(1 − t)n−k. (10)

It is clear that Bn(t) ∈ Pn and its definition also holds when f : [0, 1] → R is only a bounded function.
The polynomials Bn(t) converge uniformly to f on [0, 1] and this fact is the key piece for the Bernstein
constructive demonstration of Weierstrass approximation theorem [16, 23, 29].

The polynomials appearing in the formula on the right hand side of (10), namely;

bk(t) = bk,n(t) :=
(
n
k

)
tk(1 − t)n−k, (11)

are the probability mass functions or Newton probabilities, that is, the probabilities of k successes in n
trials of random process with individual probability of success t in each trial, k = 0, . . . , n. Also, it is clear
that deg(bk,n(t)) = n, for each k = 0, . . . , n.

A fact apparently trivial, but tremendously important for storing a polynomial into the memory of a
computer is that the probabilities of Newton (11) form a basis for the polynomial space Pn. That is,

Pn = span
{
b0,n(t), b1,n(t), . . . , bn,n(t)

}
.

We call Bernstein polynomial to the representation of any polynomial P(t) ∈ Pn in terms of the basis
{b0,n(t), b1,n(t), . . . , bn,n(t)}. So, for each P(t) ∈ Pn there exists a unique vector (β0,0, β1,n, . . . , βn,n) ∈ Rn+1 such
that

P(t) =

n∑
k=0

βk,nbk,n(t)︸          ︷︷          ︸
Bernstein polynomial

. (12)

The name Bernstein polynomial for the expression on the right hand side of (12) was coined by Qian et
al. (cf. [2, 25, 26, 28, 27]), although Farouki and Goodman [5] have preferred to use the term Bernstein
form to refer to the same expression. By (12) we have that the nth Bernstein polynomial do the function
f ∈ C[0, 1] given by (10) becomes in a particular case of Bernstein polynomials, for which βk,n = f

(
k
n

)
,

k = 0, 1, . . . , n.
The next result is a straightforward consequence of the definition (11).

PROPOSITION 3.1. The Newton probabilities {b0,n(t), b1,n(t), . . . , bn,n(t)} satisfy the following algebraic and analy-
tic properties:

(i) Partition of unity property.
n∑

k=0

bk,n(t) = 1, for all t ∈ R. (13)

(ii) Non-negativity property.
bk,n(t) ≥ 0, for all t ∈ [0, 1]. (14)
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(iii) Symmetry property.
bk,n(t) = bn−k,n(1 − t), for all t ∈ [0, 1]. (15)

(iv) Recurrence formula.
bk,n+1(t) = tbk−1,n(t) + (1 − t)bk,n(t), for all t ∈ [0, 1]. (16)

(v) Unimodality or extremal property. For n ≥ 1, bk,n(t) attains a relative maximum at t = k
n , k = 0, . . . , n.

(vi) Degree elevation property. For k = 0, . . . , n, we have

bk,n(t) =
n + 1 − k

n + 1
bk,n+1(t) +

k + 1
m + 1

bk+1,n+1(t), (17)

for all t ∈ [0, 1].
(vii) Representation in terms of the canonical basis of Pn.

bk,n(t) =

n∑
j=k

(−1) j−k
(
n
j

)(
j
k

)
t j. (18)

For Bernstein polynomials we have the following result.

PROPOSITION 3.2. Let P(t) =
∑n

k=0 βk,nbk,n(t) be a Bernstein polynomial. Then the following properties hold.
(i) P(0) = β0,n and P(1) = βn,n.

(ii) Inversion formula. For each 0 ≤ j ≤ n, we have

t j =

n∑
k= j

(
k
j

)
(

n
j

)bk,n(t). (19)

(iii) Change of basis. If P(t) has the following representation in terms of the canonical basis for Pn:

P(t) =

n∑
k=0

ak,ntk,

then

βk,n =

k∑
j=0

(
k
j

)
(

n
j

)a j,n, k = 0, . . . , n. (20)

(iv) Lower and upper bounds.
mı́n

0≤k≤n
βk,n ≤ P(t) ≤ máx

0≤k≤n
βk,n. (21)

(v) Differential relation and difference operator of coefficients. For each j = 0, . . . , n, we have

P( j)(t) =
n!

(n − j)!

n− j∑
k=0

∆ j (βk,n
)

bk,n− j(t), (22)

where the finite difference of order j of the coefficient βk,n is given by

∆ j (βk,n
)

:= ∆
(
∆ j−1 (

βk,n
))

= βk+ j,n −

(
j
1

)
βk+ j−1,n + · · · + (−1) j−1

(
j

j − 1

)
βk+1,n + (−1) jβk,n

=

j∑
r=0

(−1)r
(

j
r

)
βk+ j−r,n.

(vi) Integration and partial sums. ∫ t

0
P(s)ds =

n∑
k=0

βk,ncn−k(t), (23)

where

cn−k(t) =

(
n
k

) n−k∑
r=0

(−1)r
(

n−k
r

)
k + r + 1

tk+r+1.
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According to the inversion formula (19) to verify that the Newton probabilities (11) form a basis for
Pn, it suffices to show that the set {b0,n(t), b1,n(t), . . . , bn,n(t)} is linearly independent. Assume that

c0b0,n(t) + c1b1,n(t) + · · · + cnbn,n(t) = 0,

for some ck ∈ R, k = 0, . . . , n. By (18) we have

0 = c0b0,n(t) + c1b1,n(t) + · · · + cnbn,n(t)

= c0

n∑
j=0

(−1) j
(
n
j

)(
j
0

)
t j + c1

n∑
j=1

(−1) j−1
(
n
j

)(
j
1

)
t j + · · · + cn

n∑
j=n

(−1) j−n
(
n
j

)(
j
n

)
t j

= c0 +

 1∑
j=0

c j(−1)1− j
(
n
1

)(
1
j

) t +

 2∑
j=0

c j(−1)2− j
(
n
2

)(
2
j

) t2 + · · · +

 n∑
j=0

c j(−1)n− j
(
n
n

)(
n
n

) tn.

Next, using that {1, t, . . . , tn} is basis for Pn, we obtain

c0 = 0,
1∑

j=0

c j(−1)1− j
(
n
1

)(
1
j

)
= 0,

· · ·
n∑

j=0

c j(−1)n− j
(
n
n

)(
n
n

)
= 0,

which implies that c0 = c1 = · · · = cn = 0.

PROPOSITION 3.3. (cf. [28, Corollary 1]). Let P(t) a polynomial of degree n. For any ε > 0 there exists a positive
integer M ≥ n, such that for all t ∈ [0, 1] and integer m ≥ M, we have∣∣∣∣∣∣∣

m∑
k=0

(
βk,m − P

(
k
m

))
bk,m(t)

∣∣∣∣∣∣∣ < ε, (24)

where β0,m, β1,m, . . . , βm,m satisfy P(t) =
∑m

k=0 βk,mbk,m(t).

Demostración. Let n be the degree of P(t). Since for any m ≥ n the Newton probabilities form a basis for
Pm, we have

P(t) ∈ span
{
b0,m(t), b1,m(t), . . . , bm,m(t)

}
, for all m ≥ n.

On the other hand, P(t), t ∈ [0, 1] is a continuous function on [0, 1]. Then, the Bernstein demonstration
of the Weierstrass approximation theorem [16, 23, 29] guarantees that

lı́m
m→∞

|P(t) − Bm(P; t)| < ε, for all t ∈ [0, 1].

Or equivalently, there exists M ∈ N with M ≥ n such that∣∣∣∣∣∣∣
m∑

k=0

(
βk,m − P

(
k
m

))
bk,m(t)

∣∣∣∣∣∣∣ < ε, whenever m ≥ M, for all t ∈ [0, 1],

where β0,m, β1,m, . . . , βm,m satisfy P(t) =
∑m

k=0 βk,mbk,m(t).

Now we ready for showing the connection between stochastic logic and Bernstein polynomials. Sup-
pose that we have a combinational circuit y = f (x1, x2, . . . , xn) consisting of a decoding block4 and a

4In general, a decoding block is a combinatorial circuit which has n inputs and m outputs, with m ≤ 2n. A typical application of
the decoding blocks is to generate keyboard codes for introducing data into the computer from a keyboard [32].
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multiplexing block5, which transform the n inputs {x1, . . . , xn} ∈ {0, 1} as follows: If k out of the inputs
{x1, . . . , xn} of the decoding block are logical 1, then sk is set to 1 and the other outputs are set to 0,
(0 ≤ k ≤ n). So, the output of the decoding block is (s0, . . . , sn). The outputs of the decoding block are fed
into the multiplexing block, as shown in Figure 6 and act as the selecting signals (control inputs). The
data signals (inputs) of the multiplexing block consist of n + 1 inputs z0, . . . , zn ∈ {0, 1}.

Figura 6: Combinational circuit associated to a Bernstein polynomial with coefficients in [0, 1] (cf. [1, 25,
26, 28]).

Since the circuit contains a multiplexing block, once it decodes the inputs x1, . . . , xn then the boolean
function y = f (x1, . . . , xn) takes the form

y =

n∨
k=0

(zk ∧ sk), (25)

which means that the output of the multiplexing block y is set to be the input zk if sk = 1. Using the
association (3) for (x1, . . . , xn), (s0, . . . , sn) and (z1, . . . , zn) we can choose discrete and independent random
variables (X1, . . . , Xn), (S 0, . . . , S n) and (Z0, . . . ,Zn), such that Xk ∼ Be(pk), k = 1, . . . , n, S j ∼ Be( p̂ j) and
Z j ∼ Be( ˆ̂p j), j = 0, . . . , n. Similarly, we define

pXk := P{Xk = 1} = pk and 1 − pXk := P{Xk = 0} = 1 − pk, k = 1, 2, . . . ,N,
pS j := P{S j = 1} = p̂ j and 1 − pS j := P{S j = 0} = 1 − p̂ j,

pZ j := P{Z j = 1} = ˆ̂p j and 1 − pS j := P{S j = 0} = 1 − ˆ̂p j, j = 0, 1, . . . ,N.

Applying Theorem 1 to the function y = f (x1, . . . , xn), we have that the stochastic logic yields a multiva-
riate polynomial as in (8), such that pY = F̂(pX1 , . . . , pXn ).

Let g(t) be the polynomial associated to F̂ for ak = t, k = 1, . . . , n. Assume that pX1 = · · · = pXn = t0,
since s j is set to 1 if and only if j out of n inputs of the decoding block are 1, the probability that S j is 1
is (see e.g., [1, pp. 10-11.]):

pS j = P{S j = 1} =

(
n
j

)
t j
0(1 − t0)n− j = b j,n(t0), j = 0, . . . , n. (26)

Now, assume that pZ j = β j,n, j = 0, . . . , n. Then

pY = P{Y = 1} =

n∑
k=0

P{Y = 1|S k = 1}P{S k = 1}, (27)

but from (25) is deduced that S j = 1 implies Y = Z j, so

P{Y = 1|S j = 1} = P{Z j = 1} = pZ j = β j,n. (28)

By (12), (9), (27) and (28) we obtain

g(t0) = pY = P{Y = 1} =

n∑
k=0

βk,nbk,n(t0). (29)

5A multiplexing block is a combinatorial circuit which has n inputs, m control inputs with m ≤ n, and a unique output. Essen-
tially, multiplexing blocks generalized to a multiplexer circuit [32].
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Hence, under the constrains imposed by us, the combinational circuit associated to the function y =

f (x1, . . . , xn) would require that g(t) be a Bernstein polynomial whose coefficients β j,n belong to [0, 1].
The next result summarizes the ideas above.

THEOREM 2. [25, Theorem 2]. Let P(t) =
∑n

k=0 βk,nbk,n(t) be any Bernstein polynomial. If the coefficients βk,n ∈ [0, 1],
k = 0, . . . , n, then we can design stochastic logic to compute the Bernstein polynomial. That is, there exists an mul-
tivariate polynomial F̂ satisfying (9) such that its associated polynomial is P(t).

Given g(t) ∈ Pn, we say that g(t) can be implemented by stochastic logic, if there exists an multivariate
polynomial F̂ as in (8) such that if PX1 = PX2 = · · · = PXn = t0 then g(t0) coincides with (9), that is

g(t0) = F̂(t0, t0, . . . , t0︸       ︷︷       ︸
n− times

) = F̂(PX1 , PX2 , . . . , PXn ) = pY . (30)

In [25, 28] Qian et al. focus their attention on the study and characterization of the polynomials
g(t) ∈ Pn which can be implemented by stochastic logic. More precisely, they consider U,V,W ⊂ P subsets
of polynomials given by:

W =
{

g(t) ∈ P : g(t) can be implemented by stochastic logic
}
, (31)

U =
{

P(t) ∈ P : ∃ n ≥ 1, 0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1, such that P(t) =
∑n

k=0 βk,nbk,n(t)
}
, (32)

V =

{
P(t) ∈ P : P(t) ≡ 0, or P(t) ≡ 1, or there exists n ≥ 1, such that deg(P(t)) = n,

0 < P(t) < 1, t ∈ (0, 1), and 0 ≤ P(0), P(1) ≤ 1

}
. (33)

Note that Theorem 2 says us that U ⊆ W.

THEOREM 3. [25]. Given W,V ⊂ P as in (31) and (33), respectively, then W ⊆ V .

In order to obtain a characterization of W we need the following result.

THEOREM 4. [28, Theorem 1]. Let P(t) ∈ Pn with deg(P(t)) = n, n ≥ 0. For any ε > 0 there exists a positive
integer M ≥ n, such that for all integers m ≥ M and k = 0, . . . ,m, we have∣∣∣∣∣∣βk,m − P

(
k
m

)∣∣∣∣∣∣ < ε, (34)

where β0,m, β1,m, . . . , βm,m satisfy P(t) =
∑m

k=0 βk,mbk,m(t).

Theorem 4 is a result stronger than Proposition 3.3, since P(t) ∈ Pn satisfies the hypothesis of Theorem
4, using (13) and (14) we obtain (24). We refer the interested reader to [28] for a detailed proof of this
theorem. For the purpose of our discussion here, we only give a sketch of it.

Given ε > 0. If n = 0, then P(t) = c, with c some constant. Taking M = 1, we have P
(

k
m

)
= c, k = 0, . . . ,m,

whenever m ≥ M. Thus, Theorem 4 holds. If n > 0, we choose M ∈ N such that

M > máx

n2

ε

n∑
i=0

∣∣∣∣∣∣
(
n
i

)
βi,n

∣∣∣∣∣∣ , 2n

 ,
where the real numbers β0,n, β1,n, . . . , βn,n satisfy P(t) =

∑n
i=0 βi,nbi,n(t). Now consider any m ≥ M. Since

2n ≤ máx

n2

ε

n∑
i=0

∣∣∣∣∣∣
(
n
i

)
βi,n

∣∣∣∣∣∣ , 2n

 < M ≤ m,

we have m − n > n.
Using the following inequality as the main tool of the proof (cf. [28, Lemma 2]):∣∣∣∣∣∣∣∣

(
k
m

)i (
1 −

k
m

)n−i

−

(
m−n
k−1

)(
m
k

)
∣∣∣∣∣∣∣∣ ≤ n2

m
,

44



El autor / Matua Revista MATUA VOL: VI (2020) pǵina: 45–49 45

holds whenever n > 0, m > n, 0 ≤ k ≤ m and máx{0, k − m + n} ≤ i ≤ mı́n{k, n}, the authors of [28] obtain∣∣∣∣∣∣βk,m − P
(

k
m

)∣∣∣∣∣∣ < ε, in each one of the following cases:


n ≤ k ≤ m − n,
0 ≤ k < n,
m − n < k ≤ m.

THEOREM 5. [28, Theorem 2]. Given U,V ⊂ P as in (32) and (33), respectively, then U = V .

Again, we just show the main ideas involved in the proof of Theorem 5. We strongly recommend to
the interested reader see [28] for the detailed proof of this theorem.

Case 1: U ⊆ V , (cf. [28, Theorem 3]). Let n ≥ 1 and βk,n = 0, for all k = 0, . . . , n, then

P(t) =

n∑
k=0

βk,nbk,n(t) = 0,

thus P(t) ≡ 0 ∈ U, and by (33) P(t) ∈ V . Analogously, if we take βk,n = 1, for all k = 0, . . . , n, then by (13)
we have

P(t) =

n∑
k=0

bk,n(t) = 1,

thus P(t) ≡ 1 ∈ U, and by (33) P(t) ∈ V .
Now consider any polynomial P(t) ∈ U such that P(t) . 0 and P(t) . 1, then there exist n ≥ 1 and

0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1 such that

P(t) =

n∑
k=0

βk,nbk,n(t).

By part (ii) of Proposition 3.2 it is cleat that P(0) ≤ 0 and P(1) ≤ 1. Since 0 ≤ βk,n ≤ 1, for k = 0, . . . , n,
using (13) and (14) we get 0 ≤

∑n
k=0 βk,nbk,n(t) ≤ 1. That is, 0 ≤ P(t) ≤ 1.

Now, we assume that there exists a t0 ∈ (0, 1) such that P(t0) ≤ 0, or P(t0) ≥ 1. Again, (13) and (14)
imply 0 ≤ P(t0) ≤ 1, thus P(t0) = 0 or P(t0) = 1. If P(t0) = 0, since t0 ∈ (0, 1) then 0 < tk

0(1 − t0)n−k, k =

0, . . . , n, and hence, bk,n(t0) > 0 for all k = 0, . . . , n. Then, P(t0) = 0 implies βk,n = 0, for all k = 0, . . . , n, i.e.,
P(t) ≡ 0, which is a contradiction.

A similar reasoning allows to show that P(t0) = 1 implies P(t) ≡ 1, and we get a contradiction again.
Therefore, P(t) satisfies 0 < P(t) < 1 for t ∈ (0, 1) and 0 ≤ P(0), P(1) ≤ 1, that is, P(t) ∈ V .

Case 2: V ⊆ U, (cf. [28, Theorems 4,5, Corollaries 2,3]). Let us consider the following subsets of
polynomials:

V1 =
{

P(t) ∈ P : ∃ n ≥ 1, such that deg(P(t)) = n, 0 < P(t) < 1, for all t ∈ (0, 1), and 0 ≤ P(0), P(1) < 1
}
,

V2 =
{

P(t) ∈ P : ∃ n ≥ 1, such that deg(P(t)) = n, 0 < P(t) < 1, for all t ∈ (0, 1), and P(0) = 0, P(1) = 1
}
,

V3 =
{

P(t) ∈ P : ∃ n ≥ 1, such that deg(P(t)) = n, 0 < P(t) < 1, for all t ∈ (0, 1), and 0 < P(0), P(1) ≤ 1
}
,

V4 =
{

P(t) ∈ P : ∃ n ≥ 1, such that deg(P(t)) = n, 0 < P(t) < 1, for all t ∈ (0, 1), and P(0) = 1, P(1) = 0
}
.

Then
V = {P(t) ∈ P : P(t) ≡ 0, or P(t) ≡ 1} ∪ V1 ∪ V2 ∪ V3 ∪ V4.

Since {P(t) ∈ P : P(t) ≡ 0, or P(t) ≡ 1} ⊂ U, our problem is reduced to show that V j ⊆ U, for all j =

1, 2, 3, 4.
If P(t) ∈ V1, then there exists n ≥ 1 such that deg(P(t)) = n and

0 ≤ P(t) < 1, for t ∈ [0, 1]. (35)

Since P(t) is continuous on [0, 1], it attains its maximum value MP on [0, 1] and using (35) we have MP < 1.
Let ε1 = 1−MP > 0, by Theorem 4, there exists a positive integer M1 ≥ n such that for all integers m ≥ M1
and k = 0, . . . ,m, we have ∣∣∣∣∣∣βk,m − P

(
k
m

)∣∣∣∣∣∣ < ε1,
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where β0,m, β1,m, . . . , βm,m satisfy that P(t) =
∑m

k=0 βk,mbk,m(t).
Note that for all m ≥ M1 and k = 0, . . . ,m : βk,m < ε1 + P

(
k
m

)
≤ ε1 + MP = 1.

Denote by r the multiplicity of 0 as a root of P(t) (where r=0 if P(0) , 0) and by s the multiplicity of 1
as a root of P(t) (where s=0 if P(1) , 0). Then, P(t) admits the following factorization:

P(t) = tr(1 − t)sh(t), (36)

where h(t) ∈ P satisfies h(0) , 0 and h(1) , 0.
Suppose that h(0) < 0, by the continuity of h(t), there exists t0 ∈ (0, 1) such that h(t0) < 0. Then,

P(t0) = tr
0(1 − t0)sh(t0) < 0,

which is a contradiction, since P(t) ∈ V1. Hence, h(0) > 0. Similarly, we have h(1) > 0.
Since P(t) > 0 for t ∈ (0, 1), then h(t) =

P(t)
tr(1−t)s > 0 for t ∈ (0, 1). Hence, h(t) > 0, for all t ∈ [0, 1]. Again,

using the continuity of h(t) on [0, 1], we have h(t) attains its maximum value Mh > 0 on [0, 1]. Applying
Theorem 4 with ε2 = Mh, there exists a positive integer M2 ≥ n − r − s, such that for all integers d ≥ M2
and k = 0, . . . , d, we have ∣∣∣∣∣∣γk,d − h

(
k
d

)∣∣∣∣∣∣ < ε2,

where γ0,d, γ1,d, . . . , γd,d satisfy h(t) =
∑d

k=0 γk,dbk,d(t).
Notice that for all d ≥ M2 and k = 0, . . . , d : γk,d > h

(
k
d

)
− ε2 ≥ Mh − Mh = 0. Next, taking m0 ≥

máx{M1,M2 + r + s}, P(t) can be expressed as a Bernstein polynomial of degree m0: P(t) =
∑m0

k=0 αk,m0 bk,m0 (t),
with 0 ≤ αk,m0 ≤ 1, for k = 0, . . . ,m0. Therefore, P(t) ∈ U.

If P(t) ∈ V3, let us consider the polynomial h(t) = 1 − P(t), t ∈ [0, 1]. Then h(t) ∈ V1 ⊆ U. Since g(t) ∈ U
implies 1 − g(t) ∈ U, then we have P(t) = 1 − h(t) ∈ U. Hence, V3 ⊆ U.

Now, if P(t) ∈ V2, let r be the multiplicity of 0 as a root of P(t). So, P(t) admits the following factoriza-
tion:

P(t) = trh(t), (37)

where h(t) ∈ P satisfies h(0) , 0. Proceeding similarly as the case V1 ⊆ U, we obtain h(0) > 0. Since
h(t) =

P(t)
tr > 0 for t ∈ (0, 1], then h(t) > 0 for t ∈ [0, 1]. By continuity of h(t) on [0, 1], it attains its maximum

value Mh > 0 on [0, 1]. Applying Theorem 4 with ε1 = Mh, there exists a positive integer M1 ≥ n − r such
that for all integers d ≥ M1 and k = 0, . . . , d, we have∣∣∣∣∣∣γk,d − h

(
k
d

)∣∣∣∣∣∣ < ε1,

where γ0,d, γ1,d, . . . , γd,d satisfy h(t) =
∑d

k=0 γk,dbk,d(t).
Moreover, for all d ≥ M1 and k = 0, . . . , d : γk,d > h

(
k
d

)
− ε1 ≥ Mh − Mh = 0.

Consider Q(t) = 1 − P(t), t ∈ [0, 1]. Then 0 < Q(t) < 1 for t ∈ (0, 1) and Q(0) = 1, Q(1) = 0. Let s be the
multiplicity of 1 as a root of Q(t). Then Q(t) admits the following factorization:

Q(t) = (1 − t)sq(t), (38)

where q(t) ∈ P satisfies q(1) , 0. Proceeding similarly as the case V1 ⊆ U, we obtain q(1) > 0. Since
q(t) =

Q(t)
(1−t)s > 0 for t ∈ [0, 1), then q(t) > 0 for all t ∈ [0, 1]. The continuity of q(t) on [0, 1] guarantees that

q(t) attains its maximum value Mq > 0 on [0, 1]. Applying Theorem 4 with ε2 = Mq, there exists a positive
integer M2 ≥ n − s such that for all integers m ≥ M2 and k = 0, . . . ,m, we have∣∣∣∣∣∣βk,m − q

(
k
m

)∣∣∣∣∣∣ < ε2,

where β0,m, β1,m, . . . , βm,m satisfy q(t) =
∑m

k=0 βk,mbk,m(t). Since for all integers m ≥ M2 and k = 0, . . . ,m we
have βk,d > q

(
k
m

)
− ε2 ≥ Mq −Mq = 0, taking m0 ≥ máx{M1 + r,M2 + s}, P(t) can be expressed as a Bernstein

polynomial of degree m0: P(t) =
∑m0

k=0 αk,m0 bk,m0 (t), with 0 ≤ αk,m0 ≤ 1, for k = 0, . . . ,m0. Therefore, P(t) ∈ U.
Finally, if P(t) ∈ V4, let us consider the polynomial h(t) = 1 − P(t), t ∈ [0, 1]. Then h(t) ∈ V2 ⊆ U. Since

g(t) ∈ U implies 1− g(t) ∈ U, we have P(t) = 1− h(t) ∈ U. Hence, V4 ⊆ U, and we can conclude that V ⊆ U.
Theorems 3, 5 and 2 allow to deduce that W ⊆ V = U ⊆ W. That is;
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THEOREM 6. [28]. Given W,U,V ⊂ P as in (31)-(33), respectively, then W = U = V .

For concluding, it is worthy to mention that to the best of our knowledge, the treatment or imple-
mentation by use of some stochastic logic of Qian-Riedel-Rosenberg type has not been considered for
boolean functions of the form f : {0, 1}N → {0, 1}N . Thus, the following questions related to Theorem
1 arise: Can Theorem 1 be extended in this setting? In negative case, what is the difficult for finding
such a extension? In affirmative case, how do we characterize such a extension? Some answers to these
questions constitute part of the work in progress [30].
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