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Abstract

In this paper, we study ω-narrow and ω-balanced topological groups and prove they may be embedded as subgroups
of products of second countable (resp, first countable) topological groups. We also prove that this kind of groups are
closed with respect to the most common operations, such as the taking of subgroups, arbitrary products and under
continuos homomorphic images. We finally prove that the class of ω-balanced topological groups is wider than the class
of ω-narrow topological groups.

Keywords: Topological group, topological group ω-narrow, topological group ω-balanced and topological
isomorphism.

Resumen

En este artı́culo se estudian los grupos topológicos ω-estrechos y ω-balanceados y se demuestra que se pueden encajar
como subgrupos de productos de grupos topológicos segundo numerable o primero numerable respectivamente. Se
prueba que estas clases de grupos son cerradas bajo las operaciones mas frecuentes en grupos topológicos, son cerradas
bajo subgrupos, bajo productos arbitrarios y se conservan atravéz de homomorfismos continuos. Se muestra también que
la clase de grupos topológicos ω-balanceados es más amplia que la clase de grupos topológicos ω-estrechos.

Palabras claves: Grupos topológicos, grupos topológicos ω-estrechos, grupos topológicos ω-balacenados e
isomorfismos topológicos.
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1. Introducción

Tychonoff spaces are spaces that can be embedded in a topological product of the form Im, where m is
a sufficiently large cardinal and I = [0, 1]. We want to have a similar classification option in topological
groups. In this case, since we have additional structure (the algebraic) we can use neither I nor R. We
then turn to second numerable groups or first numerable groups. By the theorem of it Birkoff-Kakutani, a
topological group is first countable if, and only if, it is metrizable.

The purpose of this paper is to determine under what conditions a topological group can be embedded
as a subgroup of a product of second countable or first countable topological groups.

2. Preliminary

The terminology of [3], [6], [11] and [12], is used throughout.
A semigroup is a non-void set S together with a mapping (x, y) → x · y of S × S → S such that

x · (y · z) = (x · y) · z for all x, y, z ∈ S .
An element e of a semigroup S is called an identity for S if ex = x = xe for every x ∈ S . A semigroup

with identity is called monoide. An element x of a monoid M is said to be invertible if there exists an element
y of M such that que x · y = e = y · x. If every element x of a monoid M is invertible, then M is called group.

Let S be a semigroup. For a fixed element a ∈ S ,the mappings x 7→ ax and x 7→ xa of S to itself are
called the left and right actions of a on S , and denoted by %a y λa respectively.

If G is a group, the mapping x 7→ x−1 of G onto itself is called inversion.

A right topological semigroup consists of a semigroup S and a topology τ on S such that for all a ∈ S ,
the right action %a of a on S is a continuous mapping of the space S to itself.

A left topological semigroup consists of a semigroup S and a topology τ on S such that for all a ∈ S ,
the left action λa of a on S is a continuous mapping of the space S to itself.

A semigroup topological consists of a semigroup S and a topology τ on S such that the multiplication
in S , as a mapping of S × S to S , is continuos when S × S is endowed with the product topology.

A right topological monoid is a right topological semigroup with identity. Similarly, a topological
monoid is a topological semigroups with identity, and a semitopological monoid is a semitopological
semigroup with identity.

A left(right) topological group is a left (right) topological semigroup whose underlying semigroup is a
group, and a semitopological group is a left topological group which is also a right topological group.

A topological group G is a topological space that is also a group such that the group operations of
product:

G ×G → G : (x, y) 7→ xy

and taking inverses:
G → G : x 7→ x−1

are continuous.
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2.1. Cardinals invariants

Cardinal functions are widely used in topology as a tool for describing various topological properties.
Perhaps the simplest cardinal invariants of a topological space X are its cardinality and the cardinality of its
topology, denoted respectively by |X| and o(X).

Next we will give a list of the most known cardinal functions.

Weight: w(G) = mı́n{|B| : B is base of G} + ℵ0.

Density: d(G) = mı́n{|D| : D dense subset of G} + ℵ0.

Cellularity or Suslin number:
c(G) = sup{|V| : V is a family of mutually disjoint non-empty open subsets of G} + ℵ0.

Network weight : nw(G) = mı́n{|U| : U is network for G} + ℵ0.

Character: χ(G) = sup{χ(p,G)1 : p ∈ G} + ℵ0.

π-Character: πχ(G) = sup{πχ(p,G)2 : p ∈ G} + ℵ0.

Pseudocharacter: ψ(G) = sup{ψ(p,G)3 : p ∈ G} + ℵ0.

Tightness: t(G) = sup{t(p,G)4 : p ∈ G} + ℵ0.

3. Main result

In trying to give a characterization of the subgroups of Lindelöf groups similar to the existing subgroups
of compact groups, I. Guran [7] introduces the notion of group ω- bounded. In recent years, this name was
changed to that of ω-narrow because it already exists a different notion with that name. The class of the
ω-narrow groups did not characterize the subgroups of Lindelöf groups, but having very stable properties
concerning the main operations between topological groups has taken great relevance in the topological
algebras.

In this section, our goal is to study the ω-balanced and ω-narrow topological groups and their most
important properties.

3.1. ω-narrow topological group

Definition 3.1. A topological group G is called ω-narrow if, for every open neighbourhood U of the neutral
element e in G, there exists a countable subset A ⊆ G such that G = A · U.

Next, we show that the algebraic asymmetry of the previous definition disappears, in the case of topolo-
gical groups, it is more yet disappears in the case of quasi-topological groups.

Proposition 3.2. The following conditions are equivalent for a topological group G:

1) G is ω-narrow;

1χ(p,G) = mı́n{|V| : V local base for p};
2πχ(p,G) = mı́n{|V| : V is a π-local base for p};
3ψ(p,G) = mı́n{|V| : V is a pseudobase for p};
4t(p,G) = mı́n{|τ| : p ∈ C,C ⊆ G, exist F ⊆ S such that p ∈ F y |F| ≤ τ};
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2) For every open neighbourhood V of the neutral element e in G, there exists a countable set B ⊂ G
such that G = VB;

3) For every open neighbourhood V of the neutral element e in G, there exists a countable set C ⊂ G
such that CV = G = VC.

Demostración. See [3], proposition 3.4.1.

Proposition 3.3. If a topological group H is a continuous homomorphic image of ω-narrow topological
group G, then H is also ω-narrow.

Demostración. Let π : G → H a continuous homomorphism of a ω-narrow topological group G on a topolo-
gical group H. Let V an open neighbourhood of the neutral element of H. The set U = π−1(V) is open in G.
Therefore, there is a countable subset A of G such that A · U = G. We see that the set π(A) = B is countable
and B · V = π(A · U) = π(G) = H. Therefore H is ω-narrow.

Proposition 3.4. The topological product of an arbitrary family of ω-narrow topological group is an ω-
narrow.

Demostración. Let G = Πi∈IGi be a family of topological groups ω-narrow Gi. If U is open neighbourhood
of the neutral element e in G, there is an open canonical set V in G such that e ∈ V ⊆ U. Let i1, . . . , in ∈ I
the coordinates that satisfy equality V = p−1

i1
pi1 (V) ∩ · · · ∩ p−1

in
pin (V), (∗), where pi is the projection of G on

the factor Gi, i ∈ I. Note that Vk = Pik (V) is open neighbourhood of the neutral element e in Gik for all k ≤ n,
let’s choose a countable subset Ck de Gik so that Ck · Vk = Gik . We define the set C of G throughC = Πi∈I Ai,
donde Ai = Ck si i = ik for some k ≤ n, y Ai = {eGi } otherwise. It is clear that |C| = |C1 × · · · × Cn| ≤ ℵ0. Of
(∗) it follows that C · V = G, and in consequence C · U = G. Therefore G is ω-narrow.

Theorem 3.5. Every subgroup H of an G ω-narrow topological group is ω-narrow.

Demostración. Let G an ω-narrow topological grouop and let H an subgroup of G. Be an open neigh-
bourhood U of the identity e in H. Let’s choose an asymmetric open neighborhood V of e in G such
that V2 ∩ H ⊂ U. Since G is ω-narrow, there is a countable subset B of G such that G = B · V . Let
C = {c ∈ B : cV ∩ H , ∅}. Then |C| ≤ |B| ≤ ω, It is clearly that H ⊂ CV . For all c ∈ C fix, choose
ac ∈ cV ∩ H and let A = {ac : c ∈ C}. Since C is countable the subset A of H is countable. We affirm that
H = A ·U. As H is a subgroup of G and V2∩H ⊂ U ⊂ H, we have to (AV2)∩H ⊂ A ·U ⊂ H. Let H ⊂ A ·V2.
Clearly, A ⊂ H ⊂ CV . Given that V It is symmetric, it follows that C ⊂ A · V , It is symmetric, it follows that
H ⊂ CV ⊂ A · V2. Therefore H ⊂ A · U. So H = A · U which means that H is ω-narrow.

The proposition 3.3, 3.4 and the theorem 3.5, shows us that the class of topological groups ω-narrow is
stable under the most frequent operations in topological groups.

Remark 3.6. To give an example of a topological group that is not ω-narrow is very simple, just take any
discrete topological group that is not countable.

The observation before can be seen more generally in the following proposition.

Proposition 3.7. Every first-countable ω-narrow topological group has a countable base.
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Demostración. Let η = {Un : n ∈ ω} be a countable base at the identity e of an ω-narrow topological
group G ω-estrecho. For all n ∈ ω choose a countable set Cn ⊂ G such that G = Cn · Un. Then the family
β = {xUn : x ∈ Cn, n ∈ ω} is countable, and we claim that β is a base for the group G. Indeed, let O be a
neighbourhood of a point a ∈ G. One can find k, l ∈ ω such that aUk ⊂ O and U−1

l Ul ⊂ Uk. There exists
x ∈ Cl such that a ∈ xUl, whence x ∈ aU−1

l . We have xUl ⊂ (aU−1
l )Ul = a(U−1

l Ul) ⊂ aUk ⊂ O, that is, xUl

is an open neighbourhood of a and xUl ⊂ O. It remains to note that xUl ∈ β.

Proposition 3.8. Every Lindelöf topological group is ω-narrow.

Demostración. Let G an Lindelöf topological group and U an open neighbourhood e of G. The family
U = {xU : x ∈ G} it is an open cover of G. As G is Lindelöf, there is a countable subfamily U′ of U that
covers G. For definition ofU, the above means that U′ = {xU : x ∈ C} covers to G, for a countable subset
C of G, that is to say, G = C · U.

Theorem 3.9. If the cellularity of a topological group G is countable, then G is ω-narrow.

Demostración. See [3], Theorem 3.4.7.

Remark 3.10. Since a separable space has countable cellularity, the previous theorem implies that every
separable topological group is ω-narrow topological group. And therefore, the following corollary is esta-
blished.

Corollary 3.11. Every separable topological group is ω-narrow.

Remark 3.12. As we have seen the ω -narrowness is inherited to subgroups. On the contrary, the fact that
a G group contains a ω-narrow subgroup does not imply that G is. However, this implication is valid if H is
a dense subgroup in G.

Proposition 3.13. If a topological group G contains a dense subgroup H such that H is ω-narrow, then G
is also ω-narrow.

Demostración. Let U be any open neighbourhood of e in G. There exists a symmetric open neighbourhood
V of e in G such that V2 ⊂ U. Since H is an ω-narrow topological subgroup, we can find a countable subset
C ⊆ H such that H ⊆ C · V; in particular C · V is dense in G. We claim that G = C · U. Let x ∈ G arbitrary.
The set xV it’s a neighborhood of x, so that (xV) ∩ (CV̇) , ∅. Then there are v1, v2 ∈ V y c ∈ C such that
xv1 = cv2 and therefore x = cv2v−1

1 = cv2v1 ∈ C · V · V = C · V2 ⊆ C · U. So G = C · U, and therefore, G is
ω-narrow.

3.2. ω-balanced topological groups

In 1936, G. Birkhoff and S. Kakutani ([4] and [8]) gave, independently, necessary conditions and enough
for a topological group to be metrizable. From the reference [3], we will quote the following theorem, which
gives us a characterization for the metrizable topological groups.

Theorem 3.14 (G. Birkhoff, S. Kakutani). A topological group G is metrizable if and only if it is first-
countable.

Demostración. See [3], Theorem 3.3.12.

To apply the previous theorem to our paper, we introduce some definitions and propositions.
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Definition 3.15. Let us say that the invariance number Inv(G)5 of a topological group G is countable if
for each open neighbourhood U of the neutral element e in G, there exists a countable family γ of open
neighbourhoods of e such that for each x ∈ G, there exists V ∈ γ satisfying xV x−1 ⊆ U. Any such family γ
will be called subordinated to U. Topological groups G such that Inv(G) ≤ ω are also called ω-balanced.
Clearly, that every subgroup of an ω-balanced group is also ω-balanced.

Remark 3.16. It is clear that all subsets of Abelian groups are invariant. Therefore all Abelian groups are
balanced.

The following result gives an alternative characterization for balanced groups.

Lemma 3.17. A topological group G is balanced6 if and only if for every neighborhood U of e, there is a
neighborhood V of e such that xV x−1 ⊂ U for every x ∈ G.

Demostración. We will only show sufficiency since the need is clear. Let U be any neighborhood of the
identity element e of G. Let’s take an open neighborhood V of e such that xV x−1 ⊂ U for all x ∈ G. Then
set O =

⋃
x∈G

xV x−1 ⊂ U is an open in G. We just need to see that the set O is invariant. Indeed, let’s take an

arbitrary element y ∈ G. Then:

yOy−1 = y(
⋃
x∈G

xV x−1)y−1 =
⋃
x∈G

yxV x−1y−1 =
⋃
z∈G

zVz−1 = O.

The above equals show that the V set is invariant. Therefore the G group has a B base consisting of invariant
open sets.

The following proposition shows us that the class of ω-balanced is broader than the class of the ω-narrow
groups.

Proposition 3.18. If G is an ω-narrow topological group, then the invariance number of G is countable,
that is, G is ω-balanced.

Demostración. Let U be an open neighbourhood of the neutral element e in G. There exists a symmetric
open neighbourhood V of e such that V3 ⊂ U. Since G is ω-narrow, we can find a countable subset A ⊆ G
such that G = V · A. Then for each a ∈ A, there exists an open neighbourhood Wa of the neutral element
e such that aWaa−1 ⊂ V . We claim that γ = {Wa : a ∈ A} is the family we are looking for. Indeed, γ is a
countable family of open neighbourhoods of e. Now, let x be any element of G. Entonces x ∈ Va, for some
a ∈ A, and therefore, xWax−1 ⊂ VaWaa−1V−1 ⊂ V · V · V−1 ⊂ V3 ⊂ U, that is, γ is subordinated to U.

The converse to the previous statement is not true. Indeed, every discrete group is obviously ω-balanced,
while a discrete group is ω-narrow if and only if it is countable.

Proposition 3.19. The invariance number of an arbitrary first-countable topological group G is countable.

Demostración. Let {Vn : n ∈ ω} be a countable base of the space G at the neutral element e of the group G.
Take any open neighbourhood U of e. Then Ux and xU are an open neighbourhoods of x. Since the left and
right translations by x are continuous and xe ∈ Ux, ex ∈ xU, there exists n ∈ ω such that xVn ⊂ Ux and
Vnx ⊂ xU. It follows that xVnx−1 ⊂ Uxx−1 = U and x−1Vnx ⊂ x−1xU = U. Therefore, Inv(G) ≤ ω

5Notation: Inv(G) ≤ ω.
6Let G an topological group. An subset A of G is called invariant if xAx−1 = A for all x ∈ G. We say that the topological group G

is balanced, if you have a local base B of the neutral element e consisting of invariant sets.
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Corollary 3.20. Every metrizable topological group is ω-balanced.

Now we will enunciate two lemmas that will be very useful to us.

Lemma 3.21. Let G be an ω-balanced topological group, and let γ be a countable family of open neigh-
bourhoods of the neutral element e in G. Then there exists a countable family γ∗ of open neighbourhoods of
e with the following properties:

1) γ ⊂ γ∗;
2) the intersection of any finite subfamily of γ∗ belongs to γ∗;
3) for each U ∈ γ∗, there exists a symmetric V ∈ γ∗ such that V2 ⊂ U;
4) for every U ∈ γ∗ and every a ∈ G, there exists V ∈ γ∗ such that aVa−1 ⊂ U.

Demostración. See [3], Lemma 3.4.13.

Now we easily obtain the next lemma designed for a direct application.

Lemma 3.22. Let G be an ω-balanced topological group, and U an open neighbourhood of the neutral
element e in G. Then there exists a sequence {Un : n ∈ ω} of open neighbourhoods of e such that, for each
n ∈ ω, the following conditions are satisfied:

a) U0 ⊂ U;
b) U−1

n = Un;
c) U2

n+1 ⊂ Un;
d) For each x ∈ G and each n ∈ ω, there is k ∈ ω such that xUk x−1 ⊂ Un.

Demostración. See [3], Lemma 3.4.14.

The following theorem shows us that the nullity of a pseudo-metric continuous left-invariant is a normal
and closed subgroup.

Theorem 3.23. Let G be an ω-balanced topological group. Then, for every open neighbourhood U of the
neutral element e in G, there exists a continuous left-invariant pseudometric on G such that the following
conditions are satisfied:

(p1) {x ∈ G : ρ(e, x) < 1} ⊂ U;

(p2) {x ∈ G : ρ(e, x) = 0} is a closed invariant subgroup of G;

(p3) for any x, y ∈ G, ρ(e, xy) ≤ ρ(e, x) + ρ(e, y).

Demostración. By Lemma 3.22, we can find a sequence {Un : n ∈ ω} of open neighbourhoods of e in G
satisfying conditions (a) − (d) of the lemma. According to Lemmas 3.22 and 3.21, there exists a continuous
prenorm N on G such that the next condition is satisfied:

(PN4) {x ∈ G : N(x) < 1/2n} ⊂ Un ⊂ {x ∈ G : N(x) ≤ 2/2n} (1)

Now, for arbitrary x and y in G, put ρ(x, y) = N(x−1y). Then the continuity of N implies that ρ is also
continuous. It is also clear from 1 and condition (a) of Lemma 3.22 that (p1) is satisfied.

Claim 1: ρ is a pseudometric on the set G.
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Indeed, for any x and y in G we have: ρ(x, y) = N(x−1y) ≥ 0 and ρ(y, x) = N(y−1x) = N((y−1x)−1) =

N(x−1y) = ρ(x, y). Also ρ(x, x) = N(x−1x) = N(e) = 0. Further, for any x, y, z en G, we have:

ρ(x, z) = N(x−1z) = N(x−1yy−1z) ≤ N(x−1y) + N(y−1z)
= ρ(x, y) + ρ(y, z)

Hence, ρ satisfies the triangle inequality.
Claim 2: The pseudometric ρ is left-invariant.
Indeed, ρ(zx, zy) = N((zx)−1zy) = N(x−1z−1zy) = N(x−1y) = ρ(x, y), for arbitrary x, y, and z in G. Put

Z = {x ∈ G : N(x) = 0}. Notice that ρ(e, x) = N(x), for each x ∈ G, since ρ(e, x) = N(e−1x) = N(x).
Therefore, we have that Z = {x ∈ G : ρ(e, x) = 0}.

Claim 3: Z =
⋂

n∈ω Un.
This clearly follows from condition (PN4).
Claim 4:Z is a closed invariant subgroup of G.
Since the prenorm N is continuous, the set Z is closed in the space G. The fact that Z is a subgroup

of G follows from Proposition 3.3.4 in [3]. It remains to show that the subgroup Z of G is invariant. Take
any x ∈ G. We have to check that xZx−1 ⊂ Z. In view of Claim 3, it suffices to show that xZx−1 ⊂ Un,
for each n ∈ ω. Fix n ∈ ω. From condition (d) of Lemma 3.22 it follows that there exists k ∈ ω such that
xUk x−1 ⊂ Un. Since Z ⊂ Uk, we conclude that xZx−1 ⊂ Un, that is, Z invariant.

It remains to notice that condition (p3) is obviously satisfied, since N is a prenorm and ρ(e, x) = N(x).

The following theorem suggests the idea of embedding a ω -balanced group as a product of metrizable
groups.

Theorem 3.24. Let G an group ω-balanced, then for each open neighbourhood U of the neutral element e
in G, there exists a continuous homomorphism π of G onto a metrizable group H such that π−1(V) ⊂ U, or
some open neighbourhood V of the neutral element e∗ in H.

The above theorem has an important corollary:

Corollary 3.25. Let G be an ω-narrow group. Then for every neighbourhood U of the identity in G, there
exists a continuous homomorphism π of G onto a second-countable topological group H such that π−1(V) ⊂
U, for some open neighbourhood V of the identity in H.

Demostración. By Theorem 3.24, one can find a continuous homomorphism π of G a metrizable topological
group H and an open neighbourhood V of the identity in H such that π−1(V) ⊂ U. From Proposition 3.3, it
follows that the group H is ω-narrow. So 3.7 implies that H is second-countable.

Definition 3.26. A topological group G is called range-metrizable for every open neighbourhood U of the
neutral element e of G, there exists a continuous homomorphism πonto a metrizable group H such that
π−1(V) ⊂ U, for some open neighbourhood V of the neutral element of H.

Definition 3.27. LetP be any class of topological groups, and let G be any topological group. Let us say that
G is range − P if for every open neighbourhood U of the neutral element e of G, ethere exists a continuous
homomorphism π of G to a group H ∈ P such that π−1(V) ⊂ U, for some open neighbourhood V of the
neutral element e∗ of H.

Remark 3.28. It follows immediately from the definition that every subgroup of a range − P group is also
range − P.
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The next fact follows from the definition of the product topology.

Proposition 3.29. Let P be any class of topological groups closed under finite products, and let H be the
topological product of a family {Ha : a ∈ A} of groups in the class P. Then every subgroup of H is range−P.

Theorem 3.30. Let P be a class of topological groups, τ an infinite cardinal number, and G a topological
group, which is range−P and has a base B of open neighbourhoods of the neutral element such that |B| ≤ τ.
Then G is topologically isomorphic to a subgroup of the product of a family {Ha : a ∈ A} of groups such that
Ha ∈ P, for each a ∈ A and |A| ≤ τ.

Demostración. We fix a base B dof open neighbourhoods of the neutral element in G such that |B| ≤ τ. As
well as G eis range-P, for all U ∈ B there is a continuous homomorphism ϕU of G to a group HU ∈ P

such that (ϕU)−1(V) ⊂ U, for some open neighbourhood V of the neutral element in H. Let’s define ϕ as
the diagonal product of the family {ϕU : U ∈ B}. We affirm that ϕ is a topological isomorphism of G
nto a topological subgroup of the topological product of the family {HU : U ∈ B}. Indeed, if we prove
that the ϕ function is injective and that it also separates closed points, we will have proven that ϕ is a
topological isomorphism. Let’s see that varphi is injective or, equivalently, that kerϕ consists only of the
element e. Let g ∈ G with g , e choose U ∈ B such that g < U. Let pU the product projection of the
family {HU : U ∈ B} to the factor HU . Consider the neighborhood W = p−1

U (V) of identity in the family
product {HU : U ∈ B}. Of equality ϕU = pU ◦ ϕ it has toϕ−1(W) = ϕ−1

U (V) ⊆ U. Note that ϕ(g) < W,
i.e., ϕ(g) it is different from the identity in the family product {HU : U ∈ B}, is that kerϕ It consists only
of identity. On the other hand, if we take the family F = {ϕU : U ∈ B} and we prove that it separates
closed points, the demonstration is complete. Let e of the neutral element of G, C a closed such that e < C
y U ∈ B. Then e ∈ U ⊂ G \ C. Now is ϕU : G → HU and V ∈ H are such that ϕ−1

U (V) ⊂ U ⊂ G \ C, then
ϕU(e) ∈ V . To prove that V ∩ ϕU(C) = ∅. Indeed be v ∈ V . Then ϕ−1

U (v) ⊂ ϕ−1(V) ⊂ U ⊂ G \ C and so
v ∈ V ⊂ ϕ(G \C) = ϕ(G) \ ϕ(C), therefore, v < ϕ(C). So, lthe family F closed separate closed points which
implies that ϕ It is a homeomorphic embedded.

The following two theorems allow us to characterize the topological groups that can be embedded as
subgroups of products of first numerable and second numerable groups respectively.

Theorem 3.31 (G. I. Katz.[9] 1953). every topological group G, the following three conditions are equiva-
lent:

1) Inv(G) ≤ ω;

2) G is range-metrizable;

3) G is topologically isomorphic to a subgroup of a topological product of metrizable groups.

Demostración. It follows from Proposition 3.29 and Theorem 3.30 that 2) and 3) are equivalent. Theorem
3.24 gives the implication 1) and 2) are equivalent. To show that 2) and 1) are equivalent. Take an open
neighbourhood U of the neutral element e of G in a range-metrizable group G and consider a continuous
homomorphism p : g → H onto metrizable group H such that p−1(V) ⊂ U for some open neighbourhood V
of e∗ in H. Let also B be a countable base at e∗ in H. therefore, the countable family {π−1(O) : O ∈ B} of
open neighbourhoods of e in G is subordinated to U, so that Inv(G) ≤ ω.

Theorem 3.32 (I. I. Guran.[7] 1981). A topological group G is topologically isomorphic to a subgroup of
the topological product of some family of second-countable groups if and only if G is ω-narrow.
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Demostración. “⇒”
Let Ω be the class of second-countable topological groups. by Corollary 3.25, every ω-narrow group G

is range-Ω, it follows from Theorem 3.30 that G is topologically isomorphic to a subgroup of the product of
a family of groups from Ω.

“⇐”
By Proposition 3.4) and Theorem 3.5, every subgroup of a topological product of second-countable

topological groups is ω-narrow.

Definition 3.33. A compact space X is called Dugundji if for every zero-dimensional compact space Z and
every continuous mapping f : A → X, where A is a closed subset of Z, here exists a continuous mapping
g : Z → X extending f .

The following theorem provides us with a variety of natural examples of topological groups which are
not ω-balanced.

Theorem 3.34. Suppose that X is a zero-dimensional homogeneous compact space such that the group
Homeo(X) of all homeomorphisms of X onto itself, with the compact open topology, is ω-balanced. Then X
is Dugundji.

Demostración. See [3], Theorem 10.3.10.

As a corollary we have the following.

Corollary 3.35. Suppose that X is a zero-dimensional homogeneous compact space of countable tightness
such that the group Homeo(X) of all homeomorphisms of X onto itself, with the compact-open topology, is
ω-balanced. Then X is metrizable.

Demostración. See [3], Theorem 10.3.11.

The following example meets all the hypotheses of the previous corollary, but nevertheless the conclusion
is not fulfilled.

Example 3.36. Let X the space of two arrows, that is X = C0 ∪ C1 ⊂ R2, where C0 = {(x, 0) : 0 < x ≤ 1}
and C1 = {(x, 1) : 0 ≤ x < 1}, and the topology onto X it is generated by the base consisting of the sets of
the form:

{(x, i) ∈ X : x0 − 1/k < x < x0 i = 0, 1} ∪ {(x, 0)},

where 0 < x0 ≤ 1 y k = 1, 2, . . . , and the sets of the form:

{(x, i) ∈ X : x0 < x < x0 + 1/k i = 0, 1} ∪ {(x, 1)},

where 0 ≤ x0 < 1 y k = 1, 2, . . . .
Let G = Homeo(X) the group of all homeomorphisms of X on itself, with the compact-open topology,

that is the topology τ(X, X) = T generated by the base consisting of all the sets
⋂k

i=1 M(Ci,Ui), where Ci it
is a compact subset of X and Ui it is an open subset of X for i = 1, 2, . . . , k. Then (G,T ) it is a topological
group which is not ω-balanced.
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