

Facultad de Ciencias Básicas ©Programa de Matemáticas Vol. VI , Nº 1, (2019)

Revista MATUA Páginas: 50-55

Research Article, Received March 1, 2019; accepted May 25, 2019.

Basic and Classic properties in the \mathfrak{B}_F -spaces

Propiedades Básicas y Clásicas en los \mathfrak{B}_F -espacios

Adalberto García-Máynez

Instituto de Matemáticas; Universidad Nacional Autónoma de México; Area de la Investigación Científica Circuito Exterior, Ciudad Universitaria Coyoacán, 04510. México, D. F.

agmaynez@matem.unam,mx

Margarita Gary

Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Colombia

margaritagary@mail.uniatlantico.edu.co

Adolfo Pimienta Acosta

Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolivar, Barranquilla, Colombia

adolfo.pimienta@unisimonbolivar.edu.co

Abstract

 \mathfrak{B}_F -spaces determine a class between the class of pseudocompact spaces and the class of k_R -pseudocompact spaces. We present an alternative proof of the theorem 3.5 enunciated in [3] and describe their main properties.

Keywords: k_R -space, \mathfrak{B}_F -spaces, pseudocompact spaces.

Resumen

Los espacios \mathfrak{B}_F determinan una clase entre la clase de espacios pseudocompactos y la clase de espacios k_R -pseudocompact. Presentamos una prueba alternativa del teorema 3.5 enunciado en [3] y describimos sus propiedades principales.

Palabras claves: k_R -espacio, \mathfrak{B}_F -espacio, espacio pseudocompacto.

1. Introduction

The class of \mathfrak{B}_F -spaces lies between the class of pseudocompact spaces and the class of pseudocompact k_R -spaces. The difinition of \mathfrak{B}_F -spaces 2.2 was introduced by Frolík in [[3], 3.5.1], where he proves that

such spaces are productively pseudocompact. The class was later studied by Noble [7], who doesn't give it a name but denotes it by \mathfrak{B}^* (\mathfrak{B} is used for the class of productively pseudocompact spaces by both Frolík and Noble.)

It has several attractive properties like the following:

- a) \mathfrak{B}_F -spaces are productively pseudocompact;
- b) \mathfrak{B}_F -spaces are closed under finite products;
- c) Every product of \mathfrak{B}_F -spaces is pseudocompact;
- d) \mathfrak{B}_F -spaces are closed under continuous images;
- e) Every space containing a dense \mathfrak{B}_F -subspace is itself \mathfrak{B}_F -spaces

We think all of these facts prove that this is a challenging area in point set topology.

2. Preliminary

The terminology of R. Engelking [2] and J. Kelley [6], *General Topology*, is used throughout. All spaces consider in this paper are *Tychonoff*, i.e., completely regular and *Hausdorff*.

Definition 2.1. A space X is said to be :

- *i)* pseudocompact (see Hewitt [4]) if (and only if) every real continuous function on X is bounded, or equivalently, if every real continuous bounded function assumes its bounds. A completely regular space X is pseudocompact if and only if every locally finite family of its open subsets is finite, or equivalently, if there exists no locally finite sequence of its non-void open subsets.
- *ii)* k_R -space(see Noble [7]) when every real-valued function with domain X is continuous if its restriction to each compact subset of X is continuous.

Recall that a space X is called a k-space provided each subset of X which meets every compact set in a relatively closed set is itself closed, and that associated with each space X there is a unique k-space kX^1 having the same underlying set and the same compact sets as X (see [7]).

The following definition is based on Frolík's condition [[3], 3.5.1] which turns out to be equivalent. \mathfrak{B}_{F} -spaces.

Definition 2.2. A space X is a \mathfrak{B}_F -space if for every sequence U_1, U_2, \ldots of non-empty open sets, there exists a compact set $K \subseteq X$ such that $K \cap U_n \neq \emptyset$ for infinitely many indices n.

We obtain an equivalent definition if we suppose that the open sets U_n are mutually disjoint. To prove this fact, we need a Lemma.

Lemma 2.3. (see also [7]) Let $U_1, U_2, ...$ be a point finite sequence of non-empty open sets in a space X. Then there exists a sequence $T_1, T_2, ...$ of mutually disjoint non-empty open sets in X and an increasing sequence $n_0 = 0 < n_1 < n_2 \cdots$ such that $T_i \subseteq \bigcup_{j=n_{i-1}+1}^{n_i} U_j$ for each $i \in \omega$

¹(The space kX is formed by adjoining to the topology on X all those subsets whose complements meet each compact set in a relatively closed set.) When X is a T_1 -space, kX is also a T_1 -space; in fact, the identity map from kX to X is always continuous.

Proof. By ([3]), we know every subsequence U_{n_1}, U_{n_2}, \ldots of U_1, U_2, \ldots has an irreducible subcover (which may be finite). If some subsequence $\{U_{n_1}, U_{n_2}, \ldots\}$ $(n_1 < n_2 < \cdots)$ is irreducible, we may select, for each $i \in \omega$, a point $x_i \in U_{n_i} - \bigcup_{j \neq i} U_{n_j}$. Choose an open set W_1 such that $x_1 \in W_1 \subseteq W_1 \subseteq W_1 \subseteq U_{n_1}$. Since $x_2 \notin W_1^-$, there exists an open set W_2 such that $x_2 \in W_2 \subseteq W_2^- \subseteq U_{n_2} - W_1^-$. Now, since $x_3 \notin W_1^- \cup W_2^-$, there exists an open set W_3 such that $x_3 \in W_3 \subseteq W_3^- \subseteq U_{n_3} - (W_1^- \cup W_2^-)$. Continuing this process, we may construct a sequence W_1, W_2, \ldots of mutually disjoint non-empty open sets such that $W_i \subseteq U_{n_i}$ for each $i \in \omega$ and we are thru in this case Suppose then that no subsequence of U_1, U_2, \ldots is irreducible. Therefore, we may find integers $n_0 = 0 < n_1 < n_2 < \cdots$ such that if $W_i = \bigcup \{U_j : n_{i-1} < j \le n_i\}$, then $W_1 \supseteq W_2 \supseteq W_3 \supseteq \cdots$. If a subsequence of the $W'_i s$ is made of clopen sets, say W_{k_1}, W_{k_2}, \ldots the sequence $\{W_{k_i} - W_{k_{i+1}}: i = 1, 2, ...\}$ satisfies our requirements. If only finitely many of the $W'_i s$ are clopen, we may remove them and suppose, with no loss of generality, that $W_i \neq W_i^-$ for each $i \in \omega$. If for some strictly increasing sequence $0 < n_1 < n_2 < \cdots$ we have $W_{n_i} - W_{n_{i+1}}^- \neq \emptyset$ for each $i \in \omega$, we define $T_i = W_{n_i} - W_{n_{i+1}}^$ and the sequence of open sets T_1, T_2, \ldots satisfies our requirements. If for only finitely many indices $i \in \omega$, we have $W_i - W_{i+1}^- \neq \emptyset$, we may remove the corresponding W_i and suppose then that W_{i+1} is dense in W_i for each $i \in \omega$. Take a point $x_1 \in W_1 - W_2$ and let T_1 be an open set such that $x_1 \in T_1 \subseteq T_1 \subseteq W_1$. The set $T_1 \cap W_2$ is then open and infinite. Select two different points $x_2, p_2 \in T_1 \cap W_2$ and let T_2 be an open set such that $x_2 \in T_2 \subseteq T_2 \subseteq T_1 \cap (W_2 - \{p_2\})$. Take now two different points $x_3, p_3 \in T_2 \cap W_3$ and let T_3 be an open set such that $x_3 \in T_3 \subseteq T_3 \subseteq T_2 \cap (W_3 - \{p_3\})$. It is clear now how to continue this process indefinitely. The required sequence is now $\{T_i - T_{i+1}^- : i \in \omega\}$. We prove now the equivalence of the two definitions.

Proposition 2.4. In an arbitrary space X, the following two conditions are equivalent:

- 1) X is a \mathfrak{B}_F -space.
- 2) For every open sequence W_1, W_2, \ldots of mutually disjoint non-empty open subsets of X, there exits a compact set $L \subseteq X$ such that $L \cap W_n \neq \emptyset$ for infinitely many indices n.

Proof. We just have to prove that $2) \Rightarrow 1$). Let $U_1, U_2, ...$ be a sequence on non-empty open sets of X. We may suppose that the sequence $U_1, U_2, ...$ is point finite, because otherwise we could take the compact set K as a singleton. By (2.3), there exists a sequence $T_1, T_2, ...$ of mutually disjoint non-empty open sets in X and a strictly increasing sequence $n_0 = 0 < n_1 < n_2 < \cdots$ such that $T_i \subseteq \bigcup_{j=n_{i-1}+1}^{n_i} U_j$ for each $i \in \omega$. By property 2), there exists a compact set $K \subseteq X$ such that $K \cap T_i \neq \emptyset$ for infinitely many indices $i \in \omega$. Hence, $K \cap U_i \neq \emptyset$ for infinitely many indices $j \in \omega$ and the proof is complete.

Definition 2.5. A subset A of a space X is C-discrete (respect to X) if for each $x \in A$ we may find an open set U_x containing x and such that the family $\{U_x : x \in A\}$ is discrete (respect to X).

A well known characterization of pseudocompactness is the following:

Proposition 2.6. [see [3]] A space X is pseudocompact if and only if every C-discrete subset of X is finite.

(2.6) implies immediately:

Lemma 2.7. Every \mathfrak{B}_F -space X is pseudocompact.

Proof. Suppose, on the contrary, there exists an infinite discrete sequence $U_1, U_2, ...$ of non-empty open subset of *X*. Let $K \subseteq X$ be a compact set such that $K \cap U_n \neq \emptyset$ for every $n \in L$, where $L \subseteq \omega$ and $|L| = \omega$. For each $n \in L$, select a point $x_n \in K \cap U_n$. Then the set $A = \{x_n : n \in L\}$ is an infinite *C*-discrete subset of *K*, contradicting (2.6).

We call point x in X is a k-point if each open subset of kX which contains x is a neighborhood of x. Clearly X is a k-space if and only if each point in X is a k-point. Recall that a point x in X is called a P-point if each G_{δ} containing x is a neighborhood of x. We call point x in X is a k_R-point if each real-valued function on X which is continuous on compact sets is continuous at x (see [7])

We have the following result.

Proposition 2.8. (see [7], theorem 2.2) If X is pseudocompact and each point of X is either a P-point or a k_R -point, then X is a \mathfrak{B}_F -space.

Proof. Suppose *X* is not \mathfrak{B}_F -space, let $\{U_n\}$ be a countable collection of disjoint open sets only finitely many of which meet any single compact set and construct and bounded function *f* (see [[7], theorem 2.1]). Since *f* is continuous on compact sets it is continuous at each k_R -point of *X*, and *f* is continuous at *P*-point in $X \setminus \bigcup_n U_n$ since it is zero on a neighborhood of such that a point. Finally, since $f|U_n = f_n$, *f* is continuous on $\bigcup_n U_n$ and therefore *f* is continuous. Since *X* is pseudocompact, this is a contradiction so *X* is a \mathfrak{B}_F -space.

The following result is not a new result (Noble uses this fact in the proof of [[7], Theorem 2.1]) but the author explicitly formulated and proved.

Proposition 2.9. Let $\varphi: X \to Y$ be a continuous map of the \mathfrak{B}_F -space X onto the space Y. Then Y is a \mathfrak{B}_F -space.

Proof. Let $V_1, V_2, ...$ be a sequence of non-empty open sets in Y. For each $n \in \omega$, define $U_n = \varphi^{-1}(V_n)$. By the continuity of φ , each U_n is open in X. Since X is a \mathfrak{B}_F -space, there exists a compact set $L \subseteq X$ such that $L \cap U_n \neq \emptyset$ for infinitely many indices $n \in \omega$. Therefore, $\varphi(L)$ is compact and $\varphi(L) \cap V_n \neq \emptyset$ for infinitely many indices $n \in \omega$, i.e. Y is a \mathfrak{B}_F -space.

We have also the following result:

Theorem 2.10. If a space X has a dense subspace Y which is a \mathfrak{B}_{F} -space, then X itself is a \mathfrak{B}_{F} -space.

Proof. Let V_1, V_2, \ldots be a sequence of non-empty open sets in *X*. For each $n \in \omega$, define $U_n = Y \cap V_n$. Then U_n is an open non-empty subset of *Y*. By hypothesis, there exists a compact set $K \subseteq Y$ such that $K \cap U_n \neq \emptyset$ for infinitely many indices $n \in \omega$. Hence, $K \cap V_n \neq \emptyset$ for infinitely many indices and the proof is complete.

We finish this preliminary section proving the following result:

Theorem 2.11. Every finite product of \mathfrak{B}_F -spaces is a \mathfrak{B}_F -space.

Proof. It is enough to prove that if *X*, *Y* are \mathfrak{B}_F -spaces, then $X \times Y$ is also \mathfrak{B}_F -space. Let $W_s = U_s \times V_s$ be non-empty basic open sets in $X \times Y$. Let $K_1 \subseteq X$ be a compact set in *X* such that $K_1 \cap U_s \neq \emptyset$ for every $s \in L_1$, where $L \subseteq \omega$ and $|L| = \omega$. Let now $K_2 \subseteq Y$ be a compact set in *Y* such that $K_2 \cap V_s \neq \emptyset$ for every $s \in L_2$, with $L_2 \subseteq L_1$, $|L_2| = \omega$. Therefore $K = K_1 \times K_2$ is compact and satisfies $K \cap W_s \neq \emptyset$ for every $s \in L_2$. The proof is then complete.

3. Main results.

In this section we prove the two properties of \mathfrak{B}_F -spaces mentioned in the introduction which were not proved in the last section.

In the following result we present an alternative proof of the theorem 3.5 enunciated in [3].

Theorem 3.1. Let X be a \mathfrak{B}_F -space and let Y be pseudocompact. Then $X \times Y$ is pseudocompact.

Proof. Suppose, on the contrary, that $X \times Y$ is not pseudocompact. By (2.6), there exists an infinite discrete family U_1, U_2, \ldots of non-empty open sets in $X \times Y$. Let $\pi: X \times Y \to X$ be the projection onto the first factor. There exists an index $n_1 \in \omega, n_1 \ge 2$, such that $\pi(U_1) \cap \pi(U_2) \cap \cdots \cap \pi(U_{n_1}) = \emptyset$; otherwise, there would exist a point $z \in \bigcap_{n=1}^{\infty} \pi(U_n)$ and the set $\{z\} \times Y$ would be a pseudocompact subset of $X \times Y$ which would intersect every U_n , a fact which, by (2.6), cannot occur. Pick a minimum $n_1 \in \omega$. Therefore, $\bigcap_{n=1}^{n_1-1} \pi(U_n) \neq \emptyset$. Reasoning in a similar way, we may find a minimum integer $n_2 \ge n_1 + 2$ such that $\pi(U_{n_1+1}) \cap \cdots \cap \pi(U_{n_2}) = \emptyset$ and continue this process indefinitely. For each $k \in \omega$, $W_k = \pi(U_{n_{k-1}+1}) \cap \cdots \cap \pi(U_{n_k-1})$ is a non-empty subset of X. Since X is a \mathfrak{B}_F -space, there exists a compact set $K \subseteq X$ such that $K \cap W_k \neq \emptyset$ for infinitely many indices k. But then $K \times Y$ is a pseudocompact subset of $X \times Y$ which intersects U_n for infinitely many indices $n \in \omega$, and this is a contradiction.

Theorem 3.2. [See [7], Theorem 3.4] Every topological product of \mathfrak{B}_F -spaces is pseudocompact.

Proof. Taking only basic open sets in the product, it is enough to consider the case of countably many factors. Suppose then X_1, X_2, \ldots is a sequence of \mathfrak{B}_F -spaces and let $X = \prod_{n=1}^{\infty} X_n$ be its topological product. Let $W_s = \prod_{n=1}^{\infty} U_n^{(s)}$ be a box in X with non-empty open factors $U_n^{(s)} \subseteq X_n$ and $X_n = U_n^{(s)}$ for almost every n. We shall prove that the sequence $\{W_s : s \in \omega\}$ cannot be discrete. Assuming it is discrete, we shall reach a contradiction. Let $K_1 \subseteq X_1$ be a compact set such that $K_1 \cap U_1^{(s)} \neq \emptyset$ for every $s \in L_1 \subseteq \omega$, with $|L_1| = \omega$. Let $K_2 \subseteq X_2$ be a compact set such that $K_2 \cap U_2^{(s)} \neq \emptyset$ for every $s \in L_2 \subseteq L_1$, with $|L_2| = \omega$. Continuing this process indefinitely, for each $j \in \omega$ we can find a compact set $K_j \subseteq X_j$ and an infinite subset L_j of ω such that $K_j \cap U_j^{(s)} \neq \emptyset$ for every $s \in L_j$. We may suppose also that $L_1 \supseteq L_2 \supseteq \cdots$. Let $K = \prod_{j=1}^{\infty} K_j$. The set K is compact by the Tychonoff product theorem. For each $x \in K$, we may find a basic open box $V_x \subseteq X$ such that $V_x \cap W_n \neq \emptyset$ for at most one value of n. Since K is compact, we may find a finite union V of the basic sets V_x such that $V \supseteq K$ and $V \cap W_n \neq \emptyset$ for at most finitely many indices $n \in \omega$. The open set V may be expressed in the form:

$$V = L \times \prod_{j=t+1}^{\infty} X_j$$

where $t \in \omega$ and *L* is an open set in $X_1 \times X_2 \times \cdots \times X_t$ which contains $K_1 \times K_2 \times \cdots \times K_t$. Indeed there is *t* such that

$$V \supset \prod_{j=1}^{t} K_j \times \prod_{j=t+1} X_j.$$

Hence, for $s \in L_t$ we have

$$V \cap W_s \supseteq \prod_{j=1}^t (K_j \cap U_j^{(s)}) \times \prod_{j=t+1}^\infty U_j^{(s)} \neq \emptyset$$

This contradiction proves that the sequence $W_1, W_2, ...$ cannot be discrete and hence X is pseudocompact. We finish this paper with a short proof of a classic result (see [[7], Construction 2.3]):

Theorem 3.3. Every space X is homeomorphic to a closed subspace of a pseudocompact space Y.

Proof. We can obviously assume that X is not pseudocompact. For every $z \in \beta X - X$, we define $E_z = \beta X - \{z\}$. We know E_z is locally compact and pseudocompact, and hence, each E_z is a \mathfrak{B}_F -space. Taking the diagonal immersion φ of X into the product $Y = \prod_{z \in \beta X - X} E_z$, we know φ is a homeomorphism of X onto a closed subspace of Y. But by (2.8) and (3.2), Y is pseudocompact.

In [[1], example 3.4], J. L. Blasco gives an example of a \mathfrak{B}_F -space which is not a pseudocompact k_R -space (see also [5]).

We finish this note stating the following question are open:

Question 1. Does there exist a non \mathfrak{B}_F -space X such that $X \times Y$ is pseudocompact for every pseudocompact space Y?

Question 2. Does every \mathfrak{B}_{F} -space contain a dense subspace which is pseudocompact and k_{R} -space?

Question 3. Is there a \mathfrak{B}_F -space Y which cannot be expressed as the continuous image of a pseudocompact k_R -space?

Referencias

[1] J. Blasco, *Two problems on k_R-spaces*, Acta. Math. Acad. Sci. Hungar, **32**, 27-30 (1978).

[2] R. Engelking, General Topology, Heldermann Verlag Berlin, 1989.

[3] Z.Frolík, The topological product of two pseudocompact spaces, Czech. Math. J., 10, 339-348 (1960).

- [4] E. Hewitt, Ring of real-valued continuou functions I, Trans. Amer. Math. Soc., 64, 45-99 (1948).
- [5] A. Kato, A note on pseudocompact spaces and k_R-spaces, Proc. Amer. Math. Soc., 61, 175-176 (1977).

[6] J. Kelley, General Topology, Van Nost. (Princeton, 1955).

[7] N. Noble, Countably compact and pseudocompact, Czech. Math. J., 19, 390-397, (1969).