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Abstract

BF-spaces determine a class between the class of pseudocompact spaces and the class of kR-pseudocompact spaces. We
present an alternative proof of the theorem 3.5 enunciated in [3] and describe their main properties.
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Resumen

Los espacios BF determinan una clase entre la clase de espacios pseudocompactos y la clase de espacios kR -pseudocompact.
Presentamos una prueba alternativa del teorema 3.5 enunciado en [3] y describimos sus propiedades principales.

Palabras claves: kR-espacio, BF-espacio, espacio pseudocompacto.

1. Introduction

The class of BF-spaces lies between the class of pseudocompact spaces and the class of pseudocompact
kR-spaces. The difinition of BF-spaces 2.2 was introduced by Frolı́k in [[3], 3.5.1], where he proves that
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such spaces are productively pseudocompact. The class was later studied by Noble [7], who doesn’t give it
a name but denotes it by B∗ (B is used for the class of productively pseudocompact spaces by both Frolı́k
and Noble.)

It has several attractive properties like the following:

a) BF-spaces are productively pseudocompact;

b) BF-spaces are closed under finite products;

c) Every product of BF-spaces is pseudocompact;

d) BF-spaces are closed under continuous images;

e) Every space containig a dense BF-subspace is itself BF-spaces

We think all of these facts prove that this is a challenging area in point set topology.

2. Preliminary

The terminology of R. Engelking [2] and J. Kelley [6], General Topology, is used throughout.
All spaces consider in this paper are Tychonoff, i.e., completely regular and Hausdorff.

Definition 2.1. A space X is said to be :

i) pseudocompact (see Hewitt [4] ) if (and only if ) every real continuous function on X is bounded,
or equivalently, if every real continuous bounded function assumes its bounds. A completely regular
space X is pseudocompact if and only if every locally finite family of its open subsets is finite, or
equivalently, if there exists no locally finite sequence of its non-void open subsets.

ii) kR-space(see Noble [7]) when every real-valued function with domain X is continuous if its restriction
to each compact subset of X is continuous.

Recall that a space X is called a k-space provided each subset of X which meets every compact set in
a relatively closed set is itself closed, and that associated with each space X there is a unique k-space kX1

having the same underlying set and the same compact sets as X (see [7]).
The following definition is based on Frolı́k’s condition [[3], 3.5.1] which turns out to be equivalent.

BF-spaces.

Definition 2.2. A space X is a BF-space if for every sequence U1,U2, . . . of non-empty open sets, there
exists a compact set K ⊆ X such that K ∩ Un , ∅ for infinitely many indices n.

We obtain an equivalent definition if we suppose that the open sets Un are mutually disjoint. To prove
this fact, we need a Lemma.

Lemma 2.3. (see also [7]) Let U1,U2, . . . be a point finite sequence of non-empty open sets in a space X.
Then there exists a sequence T1,T2, . . . of mutually disjoint non-empty open sets in X and an increasing

sequence n0 = 0 < n1 < n2 · · · such that Ti ⊆
ni⋃

j=ni−1+1
U j for each i ∈ ω

1(The space kX is formed by adjoining to the topology on X all those subsets whose complements meet each compact set in a
relatively closed set.) When X is a T1-space, kX is also a T1-space; in fact, the identity map from kX to X is always continuous.
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Proof. By ([3]), we know every subsequence Un1 ,Un2 , . . . of U1,U2, . . . has an irreducible subcover
(which may be finite). If some subsequence {Un1 ,Un2 , . . .} (n1 < n2 < · · · ) is irreducible, we may select,
for each i ∈ ω, a point xi ∈ Uni −

⋃
j,i

Un j . Choose an open set W1 such that x1 ∈ W1 ⊆ W−1 ⊆ Un1 . Since

x2 < W−1 , there exists an open set W2 such that x2 ∈ W2 ⊆ W−2 ⊆ Un2 − W−1 . Now, since x3 < W−1 ∪ W−2 ,
there exists an open set W3 such that x3 ∈ W3 ⊆ W−3 ⊆ Un3 − (W−1 ∪ W−2 ). Continuing this process, we
may construct a sequence W1,W2, . . . of mutually disjoint non-empty open sets such that Wi ⊆ Uni for
each i ∈ ω and we are thru in this case Suppose then that no subsequence of U1,U2, . . . is irreducible.
Therefore, we may find integers n0 = 0 < n1 < n2 < · · · such that if Wi =

⋃
{U j : ni−1 < j ≤ ni}, then

W1 % W2 % W3 % · · · . If a subsequence of the W ′i s is made of clopen sets, say Wk1 ,Wk2 , . . . the sequence
{Wki − Wki+1 : i = 1, 2, . . .} satisfies our requirements. If only finitely many of the W ′

i s are clopen, we may
remove them and suppose, with no loss of generality, that Wi , W−i for each i ∈ ω. If for some strictly
increasing sequence 0 < n1 < n2 < · · · we have Wni −W−ni+1

, ∅ for each i ∈ ω, we define Ti = Wni −W−ni+1

and the sequence of open sets T1,T2, . . . satisfies our requirements. If for only finitely many indices i ∈ ω,
we have Wi − W−i+1 , ∅, we may remove the corresponding Wi and suppose then that Wi+1 is dense in Wi

for each i ∈ ω. Take a point x1 ∈ W1 −W2 and let T1 be an open set such that x1 ∈ T1 ⊆ T−1 ⊆ W1. The set
T1 ∩W2 is then open and infinite. Select two different points x2, p2 ∈ T1 ∩W2 and let T2 be an open set such
that x2 ∈ T2 ⊆ T−2 ⊆ T1 ∩ (W2 − {p2}). Take now two different points x3, p3 ∈ T2 ∩W3 and let T3 be an open
set such that x3 ∈ T3 ⊆ T−3 ⊆ T2 ∩ (W3 − {p3}). It is clear now how to continue this process indefinitely. The
required sequence is now {Ti − T−i+1 : i ∈ ω}. We prove now the equivalence of the two definitions.

Proposition 2.4. In an arbitrary space X, the following two conditions are equivalent:

1) X is a BF-space.

2) For every open sequence W1,W2, . . . of mutually disjoint non-empty open subsets of X, there exits a
compact set L ⊆ X such that L ∩Wn , ∅ for infinitely many indices n.

Proof. We just have to prove that 2) ⇒ 1). Let U1,U2, . . . be a sequence on non-empty open sets of X.
We may suppose that the sequence U1,U2, . . . is point finite, because otherwise we could take the compact
set K as a singleton. By (2.3), there exists a sequence T1,T2, . . . of mutually disjoint non-empty open sets in
X and a strictly increasing sequence n0 = 0 < n1 < n2 < · · · such that Ti ⊆

⋃ni
j=ni−1+1 U j for each i ∈ ω. By

property 2), there exists a compact set K ⊆ X such that K ∩ Ti , ∅ for infinitely many indices i ∈ ω. Hence,
K ∩ U j , ∅ for infinitely many indices j ∈ ω and the proof is complete.

Definition 2.5. A subset A of a space X is C-discrete (respect to X) if for each x ∈ A we may find an open
set Ux containing x and such that the family {Ux : x ∈ A} is discrete (respect to X).

A well known characterization of pseudocompactness is the following:

Proposition 2.6. [see [3]] A space X is pseudocompact if and only if every C-discrete subset of X is finite.

(2.6) implies immediately:

Lemma 2.7. Every BF-space X is pseudocompact.

Proof. Suppose, on the contrary, there exists an infinite discrete sequence U1,U2, . . . of non-empty open
subset of X. Let K ⊆ X be a compact set such that K ∩ Un , ∅ for every n ∈ L, where L ⊆ ω and |L| = ω.
For each n ∈ L, select a point xn ∈ K ∩ Un. Then the set A = {xn : n ∈ L} is an infinite C-discrete subset of
K, contradicting (2.6).
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We call point x in X is a k-point if each open subset of kX which contains x is a neighborhood of x.
Clearly X is a k-space if and only if each point in X is a k-point. Recall that a point x in X is called a P-point
if each Gδ containing x is a neighborhood of x. We call point x in X is a kR-point if each real-valued function
on X which is continuous on compact sets is continuous at x (see [7])

We have the following result.

Proposition 2.8. (see [7], theorem 2.2) If X is pseudocompact and each point of X is either a P-point or a
kR-point, then X is a BF-space.

Proof. Suppose X is not BF-space, let {Un} be a countable collection of disjoint open sets only finitely
many of which meet any single compact set and construct and bounded function f (see [[7], theorem 2.1]).
Since f is continuous on compact sets it is continuous at each kR-point of X, and f is continuous at P-point in
X \
⋃

n Un since it is zero on a neighborhood of such that a point. Finally, since f |Un = fn, f is continuous on⋃
n Un and therefore f is continuous. Since X is pseudocompact, this is a contradiction so X is a BF-space.

The following result is not a new result (Noble uses this fact in the proof of [[7], Theorem 2.1]) but the
author explicitly formulated and proved.

Proposition 2.9. Let ϕ : X → Y be a continuous map of the BF-space X onto the space Y. Then Y is a
BF-space.

Proof. Let V1,V2, . . . be a sequence of non-empty open sets in Y . For each n ∈ ω, define Un = ϕ−1(Vn).
By the continuity of ϕ, each Un is open in X. Since X is a BF-space, there exists a compact set L ⊆ X such
that L∩Un , ∅ for infinitely many indices n ∈ ω. Therefore, ϕ(L) is compact and ϕ(L)∩Vn , ∅ for infinitely
many indices n ∈ ω, i.e. Y is a BF-spaces.

We have also the following result:

Theorem 2.10. If a space X has a dense subspace Y which is a BF-space, then X itself is a BF-space.

Proof. Let V1,V2, . . . be a sequence of non-empty open sets in X. For each n ∈ ω, define Un = Y ∩ Vn.
Then Un is an open non-empty subset of Y . By hypothesis, there exists a compact set K ⊆ Y such that
K ∩ Un , ∅ for infinitely many indices n ∈ ω. Hence, K ∩ Vn , ∅ for infinitely many indices and the proof
is complete.

We finish this preliminary section proving the following result:

Theorem 2.11. Every finite product of BF-spaces is a BF-space.

Proof. It is enough to prove that if X,Y are BF-spaces, then X × Y is also BF-space. Let Ws = Us × Vs

be non-empty basic open sets in X × Y . Let K1 ⊆ X be a compact set in X such that K1 ∩ Us , ∅ for every
s ∈ L1, where L ⊆ ω and |L| = ω. Let now K2 ⊆ Y be a compact set in Y such that K2 ∩ Vs , ∅ for every
s ∈ L2, with L2 ⊆ L1, |L2| = ω. Therefore K = K1 × K2 is compact and satisfies K ∩Ws , ∅ for every s ∈ L2.
The proof is then complete.

3. Main results.

In this section we prove the two properties of BF-spaces mentioned in the introduction which were not
proved in the last section.

In the following result we present an alternative proof of the theorem 3.5 enunciated in [3].
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Theorem 3.1. Let X be a BF-space and let Y be pseudocompact. Then X × Y is pseudocompact.

Proof. Suppose, on the contrary, that X×Y is not pseudocompact. By (2.6), there exists an infinite discrete
family U1,U2, . . . of non-empty open sets in X × Y . Let π : X × Y → X be the projection onto the first factor.
There exists an index n1 ∈ ω, n1 ≥ 2, such that π(U1) ∩ π(U2) ∩ · · · ∩ π(Un1 ) = ∅; otherwise, there would
exist a point z ∈

⋂∞
n=1 π(Un) and the set {z} × Y would be a pseudocompact subset of X × Y which would

intersect every Un, a fact which, by (2.6), cannot occur. Pick a minimum n1 ∈ ω. Therefore,
⋂n1−1

n=1 π(Un) , ∅.
Reasoning in a similar way, we may find a minimum integer n2 ≥ n1 +2 such that π(Un1+1)∩· · ·∩π(Un2 ) = ∅

and continue this process indefinitely. For each k ∈ ω, Wk = π(Unk−1+1)∩· · ·∩π(Unk−1) is a non-empty subset
of X. Since X is a BF-space, there exists a compact set K ⊆ X such that K ∩ Wk , ∅ for infinitely many
indices k. But then K ×Y is a pseudocompact subset of X×Y which intersects Un for infinitely many indices
n ∈ ω, and this is a contradiction.

Theorem 3.2. [See [7], Theorem 3.4] Every topological product of BF-spaces is pseudocompact.

Proof. Taking only basic open sets in the product, it is enough to consider the case of countably many
factors. Suppose then X1, X2, . . . is a sequence of BF-spaces and let X =

∏∞
n=1 Xn be its topological product.

Let Ws =
∏∞

n=1 U(s)
n be a box in X with non-empty open factors U(s)

n ⊆ Xn and Xn = U(s)
n for almost every

n. We shall prove that the sequence {Ws : s ∈ ω} cannot be discrete. Assuming it is discrete, we shall reach
a contradiction. Let K1 ⊆ X1 be a compact set such that K1 ∩ U(s)

1 , ∅ for every s ∈ L1 ⊆ ω, with |L1| = ω.
Let K2 ⊆ X2 be a compact set such that K2 ∩ U(s)

2 , ∅ for every s ∈ L2 ⊆ L1, with |L2| = ω. Continuing this
process indefinitely, for each j ∈ ω we can find a compact set K j ⊆ X j and an infinite subset L j of ω such
that K j ∩U(s)

j , ∅ for every s ∈ L j. We may suppose also that L1 ⊇ L2 ⊇ · · · . Let K =
∏∞

j=1 K j. The set K is
compact by the Tychonoff product theorem. For each x ∈ K, we may find a basic open box Vx ⊆ X such that
Vx ∩Wn , ∅ for at most one value of n. Since K is compact, we may find a finite union V of the basic sets Vx

such that V ⊇ K and V ∩Wn , ∅ for at most finitely many indices n ∈ ω. The open set V may be expressed
in the form:

V = L ×
∞∏

j=t+1

X j

where t ∈ ω and L is an open set in X1 × X2 × · · · × Xt which contains K1 × K2 × · · · × Kt. Indeed there is t
such that

V ⊃
t∏

j=1

K j ×
∏
j=t+1

X j.

Hence, for s ∈ Lt we have

V ∩Ws ⊇

t∏
j=1

(K j ∩ U(s)
j ) ×

∞∏
j=t+1

U(s)
j , ∅

This contradiction proves that the sequence W1,W2, . . . cannot be discrete and hence X is pseudocompact.
We finish this paper with a short proof of a classic result (see [[7], Construction 2.3]):

Theorem 3.3. Every space X is homeomorphic to a closed subspace of a pseudocompact space Y.

Proof. We can obviously assume that X is not pseudocompact. For every z ∈ βX − X, we define Ez =

βX − {z}. We know Ez is locally compact and pseudocompact, and hence, each Ez is a BF-space. Taking the
diagonal immersion ϕ of X into the product Y =

∏
z∈βX−X Ez, we know ϕ is a homeomorphism of X onto a

closed subspace of Y . But by (2.8) and (3.2), Y is pseudocompact.
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In [[1], example 3.4], J. L. Blasco gives an example of a BF-space which is not a pseudocompact kR-
space (see also [5]).

We finish this note stating the following question are open:

Question 1. Does there exist a non BF-space X such that X×Y is pseudocompact for every pseudocompact
space Y?

Question 2. Does every BF-space contain a dense subspace which is pseudocompact and kR-space?

Question 3. Is there a BF-space Y which cannot be expressed as the continuous image of a pseudocompact
kR-space?
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