Sobre polinomios tropicales de una variable

On tropical polynomials of a single variable

Yina Ospino Buelvas ${ }^{\text {a }}$, Danilo Polo Ojito ${ }^{\text {b }}$, Jair Herazo ${ }^{\text {c }}$
Maestría en ciencias matemáticas- Universidad del Atlántico

${ }^{a}$ yinatk@gmail.com
${ }^{b}$ danilojpolo@gmail.com
${ }^{c}$ herazo93@gmail.com

Abstract

In this paper we present a study of the different algebraic properties of the tropical polynomials of a single variable, where a generalization of the tropical semiring $\mathbb{R}_{\min }$ is also introduced, which allows to extend certain concepts and gives a successful generalization of the fundamental theorem of tropical algebra.

Keywords: Tropical polynomials, tropical semiring.

Resumen

En este trabajo se presenta un estudio de las diferentes propiedades algebraicas de los polinomios tropicales de una variable, donde se introduce además una generalización del semianillo tropical $\mathbb{R}_{\text {min }}$, el cual permite extender ciertos conceptos y dar una generalización exitosa del teorema fundamental del álgebra tropical.

Palabras claves: Polinomios tropicales, semianillo tropical.

1. Introduction

The tropical geometry might be described as a piecewise linear or skeletonized version of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties (see e.g. [1],[2],[?]). The algebraic varieties are based on tropical semiring $\mathbb{R}_{\text {min }}=\mathbb{R} \cup\{+\infty\}$, with the operations

$$
x \odot y=x+y \quad x \oplus y=\min \{x, y\}
$$

The tropical semiring is idempotent in the sense that $x \oplus x=x$ for any x in $\mathbb{R}_{\text {min }}$. It is easy to check that the tropical operations are commutative, associative and satisfy to the distribution law.
The polynomials on $\mathbb{R}_{\text {min }}$ satisfy different properties that allow us to handle them suitably and to define a
version of the Fundamental Theorem of Tropical Algebra. In this paper we provide a simple algorithm for factoring tropical polynomials of a single variable and we present a generalization of the tropical semiring $\mathbb{R}_{\text {min }}$, which allows to extend certain concepts and gives a successful generalization of the fundamental theorem of tropical algebra.

2. Tropical polynomials

Definition 2.1. A tropical polynomial is a map $p: \mathbb{R}_{\text {min }} \rightarrow \mathbb{R}_{\text {min }}$, of the form $p(x):=a_{n} \odot x^{n} \oplus \ldots a_{1} \odot x \oplus a_{0}$, where $a_{i} \in \mathbb{R}_{z_{\text {min }}}$ are coefficients of p for $i=1,2, \ldots, n$, and x is the independent variable.

To understand the algebra of tropical polynomials, it is important to know that there are different polynomials that induce the same function $x \rightarrow P(x)$.
For example consider the polynomials $p(x)=2 \odot x^{2} \oplus 3 \odot x \oplus 4$ and $q(x)=2 \odot x^{2} \oplus 4$. Is easy to verify that $p(x)=q(x)$ for any $x \in \mathbb{R}_{\text {min }}$, graphically we can see it as

Definition 2.2. The degree of a tropical polynomial p denoted by $\operatorname{deg}(p)$, is the highest degrees of its monomials with non-zero coefficients. The degree of a monomial $a_{n} x^{n}$ is n, whenever $a_{n} \neq 0$.

Proposition 2.3. Let p and q be two tropical polynomials such that $p(x)=q(x)$ for all x in $\mathbb{R}_{\text {min }}$. Then $\operatorname{deg}(p)=\operatorname{deg}(q)$.

Proof.

$$
\begin{aligned}
\operatorname{deg}(p) & =\lim _{x \rightarrow-\infty} \frac{p(x)}{x} \\
& =\lim _{x \rightarrow-\infty} \frac{q(x)}{x} \\
& =\operatorname{deg}(q)
\end{aligned}
$$

Definition 2.4. The roots of a tropical polynomial p are the corners of the singular points of the graph of $p(x)$.

Example 2.5. We consider the polynomial $p(x)=4 \odot x^{3} \oplus 3 \odot x^{2} \oplus 2 \odot x \oplus 4$ and note the corresponding lines.

The graph of $y=p(x)$ is a piecewise linear function with two corners in $x=-1$ and $x=2$, is possible to factor $p(x)$ in following way:

$$
P(x)=4 \odot(x \oplus-1)^{2} \odot(x \oplus 2)
$$

The roots of the polynomial $p(x)$ are defined as the set of corners that appear in the graph of the function of the same polynomial. Let $a=(-1,1)$ and $b=(2,4)$ be corners of $p(x)$ and also, let M_{a} and M_{b} be matrices defined as:

$$
M_{a}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \quad M_{b}=\left(\begin{array}{cc}
1 & 1 \\
2 & 4
\end{array}\right)
$$

The columns of the matrices are the directions of the two lines coming out from a and b respectively. Observe that the determinants of these two matrices are exactly the exponents of the two linear forms used in the decomposition of $p(x)$ as a product of linear terms. The following result generalizes the above.

Theorem 2.6. Any tropical polynomial of degree n factorizes as the product of n linear polynomials.

Proof.

Let p be a tropical polynomial of degree n. It is clear that the graph generated by this polynomial is composed of lines and segments. Let y_{1} and y_{2} be consecutive lines in the graph of $p(x)$ with $y_{1}=a_{j}+x_{j}$ and $y_{2}=a_{i}+x_{i}$, the corresponding directional matrix for the roots $p_{i j}$ is

$$
p(x)=\left(\begin{array}{ll}
1 & 1 \\
i & j
\end{array}\right)
$$

For every $p_{i j}$ is associated the factor $\left(x \oplus \frac{x_{i}-a_{j}}{j-i}\right)^{j-i}$ with $j_{1}<\ldots<j_{r}$, the indexes of roots of $p(x)$. It is a straightforward calculation (done comparing with the graph of $p(x)$) to see that

$$
P(x)=a_{n} \odot\left(x \oplus \frac{a_{i_{j}}-a_{i_{r-1}}}{i_{r}-i_{r-1}}\right)^{i_{r}-i_{r-1}} \odot \ldots \odot\left(x \oplus \frac{a_{i_{2}}-a_{i_{1}}}{i_{2}-i_{1}}\right)^{i_{2}-i_{1}}
$$

Theorem 2.7. (Fundamental theorem of algebra) Let p be a tropical polynomial of degree n, then $p(x)=$ $a_{n} \odot\left(x \oplus x_{1}\right)^{n 1} \odot \ldots \odot\left(x \oplus x_{r}\right)^{n r}$ with $n_{1}+n_{2}+\ldots+n_{r}=n$ and $x_{1}, x_{2}, \ldots, x_{r}$ are singular points of graphs of p.

This result is an immediate consequence of the theorem 2.6, taking into account the multiplicity of the roots. Other consequence of this result, is that all polynomial equation has solution in $\mathbb{R}_{\text {min }}$.

Corollary 2.8. $\mathbb{R}_{\text {min }}$ is algebraically closed.
Theorem 2.9. If $P: \mathbb{R} \rightarrow \mathbb{R}$ is a tropical polynomial, then the the following properties are satisfied.

1. P is continuous.
2. P is piecewise linear, where the number of piecewise is finite.
3. P is concave, namely, $P\left(\frac{x+y}{2}\right) \geq \frac{1}{2}(P(x)+P(y))$ for all $x, y \in \mathbb{R}$

1 and 2 is a immediate consequence of definitions, for 3 we have

$$
\begin{aligned}
P\left(\frac{x+y}{2}\right) & =a_{n} \odot\left(\frac{x+y}{2}\right)^{n} \oplus a_{n-1} \odot\left(\frac{x+y}{2}\right)^{n-1} \oplus \ldots \oplus a_{0} \\
& =\min \left\{a_{n}+n\left(\frac{x+y}{2}\right), a_{n-1}+(n-1)\left(\frac{x+y}{2}\right), \ldots, a_{0}\right\} \\
& =\min \left\{a_{n}+\frac{n x+n y}{2}, a_{n-1}+\frac{(n-1) x+(n-1) y}{2}, \ldots, a_{0}\right\} \\
& =\frac{1}{2} \min \left\{2 a_{n}+n x+n y, 2 a_{n-1}+(n-1) x+(n-1) y, \ldots, 2 a_{0}\right\} \\
& \geq \frac{1}{2}\left\{\min \left\{a_{n}+n x, a_{n-1}(n-1) x, \ldots, a_{0}\right\}+\min \left\{a_{n}+n y, a_{n-1}(n-1) y, \ldots, a_{0}\right\}\right. \\
& =\frac{1}{2}[p(x)+p(y)]
\end{aligned}
$$

Each function that satisfy above properties can be represented as the minimum of a finite set of linear functions

3. Semiring of polynomials

In this section we will study the algebraic properties of polynomials, seeing them as elements of a certain tropical semiring. Let $(F,+, \cdot, \leq)$ be an ordered field and $\infty=S u p(F)$. Consider the extension $F_{\text {min }}=F \cup\{\infty\}$ and we define the maps

$$
\begin{aligned}
& \odot: F_{\text {min }} \times F_{\text {min }} \rightarrow F_{\text {min }} \quad \oplus: F_{\text {min }} \times F_{\text {min }} \rightarrow F_{\text {min }} \\
& \odot(x, y)=x+y \quad \oplus(x, y)=\left\{\begin{array}{ll}
y & \text { if } y \leq x \\
x & \text { if } x \leq y
\end{array}\right\}
\end{aligned}
$$

It is clear that \odot and \oplus is well defined, it will denote as $\odot(x, y)=x \odot y$ and $\oplus(x, y)=x \oplus y$. It can verified that ($F_{\text {min }}, \oplus, \odot$) is a unital semiring, since \odot is distributive with respect to \oplus, which identities are respectively $1_{\text {min }}=0$ y $0_{\text {min }}=\infty$.
We will define $F_{\min }[x]$ as the set of all equivalence classes of symbols $p(x)=a_{n} \odot x^{n} \oplus \ldots a_{1} \odot x \oplus a_{0}$, where $a_{n}, a_{n-1}, \ldots, a_{0}$ are elements in $F_{\text {min }}$ and $p \sim q$ if and only if $p(x)=q(x)$ for any x in $F_{\text {min }}$. Every element of $F_{\text {min }}[x]$ will be denominate as tropical polynomial.

Definition 3.1. If $p(x)=a_{n} \odot x^{n} \oplus \ldots a_{1} \odot x \oplus a_{0}$ and $q(x)=b_{m} \odot x^{m} \oplus \ldots b_{1} \odot x \oplus b_{0}$, are elements in $F_{\text {min }}[x]$. We will define the tropical sum as $p(x) \oplus q(x)=c_{0} \oplus c_{1} \odot x \oplus \ldots \oplus c_{t} x^{t}$, where $c_{i}=a_{i} \oplus b_{i}$ for $i=1,2, \ldots, t$ and $t=\max \{\operatorname{deg}(p), \operatorname{deg}(q)\}$, moreover $a_{i}=0_{\text {min }}$ if $i>n$ and $b_{i}=0_{\text {min }}$ when $i>m$.

In other words the sum of two tropical polynomials is performed by tropical sum corresponding coefficients of their similar terms, the most complicated operation is the one that we have to define in $F_{\min }[x]$, it is the multiplication.

Definition 3.2. If $p(x)=a_{n} \odot x^{n} \oplus \ldots a_{1} \odot x \oplus a_{0}$ and $q(x)=a_{m} \odot x^{m} \oplus \ldots a_{1} \odot x \oplus a_{0}$, are elements in $F_{\text {min }}[x]$, then of multiplication is defined as $p(x) \odot q(x)=c_{0} \oplus c_{1} \odot x \oplus \ldots \oplus c_{k} \odot x^{k}$, where $c_{t}=a_{t} \odot b_{0} \oplus a_{t-1} \odot b_{1} \oplus \ldots \oplus a_{0} \odot b_{t}$

Example 3.3. Let $p(x)=3 \odot x^{3} \oplus 2 \odot x^{2} \oplus-1$ and $q(x)=5 \odot x^{4} \oplus 3 \odot x^{3} \oplus-1 \odot x \oplus 4$ be elements of $Q_{\text {min }}[x]$, we have

$$
\begin{aligned}
p(x) \oplus q(x) & =\left(3 \odot x^{3} \oplus 2 \odot x^{2} \oplus-1\right) \oplus\left(5 \odot x^{4} \oplus 3 \odot x^{3} \oplus-1 \odot x \oplus 4\right) \\
& =5 \odot x^{4} \oplus\left(3 \odot x^{3} \oplus 3 \odot x^{3}\right) \oplus 2 \odot x^{2} \oplus-1 \odot x \oplus(-1 \oplus 4) \\
& =5 \odot x^{4} \oplus 3 \odot x^{3} \oplus 2 \odot x^{2} \oplus-1 \odot x \oplus-1
\end{aligned}
$$

For $p(x) \odot q(x)$ we have:

$$
\begin{aligned}
& c_{0}=-1 \odot 4=3 \\
& c_{1}=0_{\min } \odot 4 \oplus 2 \odot-1=0_{\text {min }} \oplus 1=1 \\
& c_{2}=2 \odot 4 \oplus 0_{\text {min }} \odot-1 \oplus-1 \odot 0_{\text {min }}=6 \oplus 0_{\text {min }} \oplus 0_{\text {min }}=6 \\
& c_{3}=3 \odot 4 \oplus 2 \odot-1 \oplus 0_{\text {min }} \odot 0_{\text {min }} \oplus-1 \odot 3=7 \oplus 1 \oplus 0_{\text {min }} \oplus 2=1 \\
& c_{4}=0_{\text {min }} \odot 4 \oplus 3 \odot-1 \oplus 2 \odot 0_{\text {min }} \oplus 0_{\text {min }} \odot 3 \oplus-1 \odot 5=0_{\text {min }} \oplus 2 \oplus 0_{\text {min }} \oplus 0_{\text {min }} \oplus 4=2
\end{aligned}
$$

Therefore, according to definition,

$$
p(x) \odot q(x)=3 \oplus 1 \odot x \oplus 6 \odot x^{2} \oplus 1 \odot x^{3} \oplus 2 \odot x^{4}
$$

Thus $(F[x], \oplus, \odot)$ is a semiring, which is denominated Tropical semiring of polynomials. The zero of this semiring is given by $0_{\text {min }}(x)=0_{\text {min }}$ and unit $1_{\text {min }}(x)=1_{\text {min }}$ for all $x \in F_{\text {min }}$.

Theorem 3.4. If $p(x)$ and $q(x)$ are two different elements of $0_{\min }(x)$ in $F_{\min }[x]$, then $\operatorname{deg}(p(x) \odot q(x))=$ $\operatorname{deg}(p(x)) \odot \operatorname{deg}(q(x))$.

Let $p(x)=a_{n} \odot x^{n} \oplus \ldots a_{1} \odot x \oplus a_{0}$ and $q(x)=b_{m} \odot x^{m} \oplus \ldots b_{1} \odot x \oplus b_{0}$ be elements of $F_{m i n}[x]$, with a_{n} and b_{m} being different to $0_{\text {min }}$. Hence $\operatorname{deg}(p(x))=n$ and $\operatorname{deg}(q(x))=m$, moreover $p(x) \odot q(x)=c_{0} \oplus c_{1} \odot x \oplus \ldots \oplus c_{k} \odot x^{k}$ where $c_{i}=a_{i} \odot b_{0} \oplus \ldots \oplus a_{0} \odot b_{i}$. Therefore
$c_{m+n}=a_{m+n} \odot b_{0} \oplus \ldots \oplus a_{m+1} \odot b_{n-1} \oplus a_{m} \odot b_{n} \oplus a_{m-1} \odot b_{n+1} \oplus \ldots \oplus a_{0} \odot b_{m+n}$

$$
=a_{m} \odot b_{n}
$$

if $i>m+n$ then the terms c_{i} are of form $a_{j} \odot b_{i-j}$, since $i=j+(i-j)>m+n$ then $j>m$ and $i-j>n$ and hence $c_{i}=0_{\text {min }}$ for every $i>m+n$. It is verified that c_{m+n} is the highest coefficient that is different to $0_{\text {min }}$. Finally
$\operatorname{deg}(p(x) \odot q(x))=m+n=\operatorname{deg}(p(x)) \odot \operatorname{deg}(q(x))$
Corollary 3.5. If $p(x)$ and $q(x)$ are elements of $F_{\text {min }}[x]$ wich is different to $0_{\text {min }}$, then $\operatorname{deg}(p(x)) \leq \operatorname{deg}(p(x) \odot$ $q(x)$).

$$
\begin{aligned}
\operatorname{deg}(P(x) \odot Q(x)) & =\operatorname{deg}(P(x)) \odot \operatorname{deg}(Q(x)) \\
& \geq \operatorname{deg}(P(x))
\end{aligned}
$$

We generalize certain results obtained in section 2, whose proofs are similar.

Proposition 3.6. If $p(x) y q(x)$ are elements of $F_{\min }[x]$, such that $p(x)=q(x)$ for every x in $F_{\text {min }}$, then $\operatorname{deg}(p)=\operatorname{deg}(q)$.

Theorem 3.7. If F is an Archimedean field, then any tropical polynomial of degree n in $F_{\min }[x]$ factorizes as the product of n linear polynomials.

Given $x, y \in F$, such that $x \leq y$. Archimedean property imply there exist $z \in F$ such that $x \leq z \leq y$, thus we obtain that $p \in \mathbb{F}_{\min }[x]$ is composed of lines and segments. Finally this result is concluded by performing a analogous procedure of the Theorem 2.6.

As an immediate consequence of this result it is possible to generalize the fundamental theorem of tropical algebra taking into account the multiplicity of the roots, which is enunciated below.

Theorem 3.8. Let F be an Archimedean field and p a tropical polynomial of degree n en $F_{\text {min }}[x]$, then $p(x)=a_{n} \odot\left(x \oplus x_{1}\right)^{n 1} \odot \ldots \odot\left(x \oplus x_{r}\right)^{n r}$ with $n_{1}+n_{2}+\ldots+n_{r}=n$ and $x_{1}, x_{2}, \ldots, x_{r}$ are singular points of graph of p.

Referencias

[1] Erwan Brugalle and Kristin Shaw. A bit of tropical geometry. The American Mathematical Monthly, 121(7):pp. 563-589, 2014.
[2] D. Maclagan, B. Sturmfels. Introduction to Tropical Geometry. University of California.(2015).Pag 1538.
[3] N. Grigg y N. Manwaring, An Elementary Proof of the Fundamental Theorem of Tropical Algebra, arXiv:0707.2591v1.
[4] T. Theobald, On the frontiers of polynomial computations in tropical geometry. Pag 1-6 (2005)
[5] J. Richter-Gebert, B. Sturmfels, y T. Theobald, First steps in tropical geometry, Idempotent mathematics and mathematical physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 289-317 (2005).

