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Abstract

In this paper we present a study of the different algebraic properties of the tropical polynomials of a single variable,
where a generalization of the tropical semiring Rmin is also introduced, which allows to extend certain concepts and
gives a successful generalization of the fundamental theorem of tropical algebra.
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Resumen

En este trabajo se presenta un estudio de las diferentes propiedades algebraicas de los polinomios tropicales de una
variable, donde se introduce además una generalización del semianillo tropical Rmin, el cual permite extender ciertos
conceptos y dar una generalización exitosa del teorema fundamental del álgebra tropical.

Palabras claves: Polinomios tropicales, semianillo tropical.

1. Introduction

The tropical geometry might be described as a piecewise linear or skeletonized version of algebraic
geometry, offering new polyhedral tools to compute invariants of algebraic varieties (see e.g. [1],[2],[? ]).
The algebraic varieties are based on tropical semiring Rmin = R ∪ {+∞}, with the operations

x � y = x + y x ⊕ y = min{x, y}

The tropical semiring is idempotent in the sense that x ⊕ x = x for any x in Rmin. It is easy to check that the
tropical operations are commutative, associative and satisfy to the distribution law.
The polynomials on Rmin satisfy different properties that allow us to handle them suitably and to define a
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version of the Fundamental Theorem of Tropical Algebra. In this paper we provide a simple algorithm for
factoring tropical polynomials of a single variable and we present a generalization of the tropical semiring
Rmin, which allows to extend certain concepts and gives a successful generalization of the fundamental
theorem of tropical algebra .

2. Tropical polynomials

Definition 2.1. A tropical polynomial is a map p : Rmin → Rmin, of the form p(x) := an� xn⊕ . . . a1� x⊕a0,
where ai ∈ Rzmin are coefficients of p for i = 1, 2, ..., n, and x is the independent variable.

To understand the algebra of tropical polynomials, it is important to know that there are different polynomials
that induce the same function x→ P(x).
For example consider the polynomials p(x) = 2 � x2 ⊕ 3 � x ⊕ 4 and q(x) = 2 � x2 ⊕ 4. Is easy to verify that
p(x) = q(x) for any x ∈ Rmin, graphically we can see it as

Definition 2.2. The degree of a tropical polynomial p denoted by deg(p), is the highest degrees of its mono-
mials with non-zero coefficients. The degree of a monomial anxn is n, whenever an , 0.

Proposition 2.3. Let p and q be two tropical polynomials such that p(x) = q(x) for all x in Rmin. Then
deg(p) = deg(q).

Proof.

deg(p) = lı́m
x→−∞

p(x)
x

= lı́m
x→−∞

q(x)
x

= deg(q)

Definition 2.4. The roots of a tropical polynomial p are the corners of the singular points of the graph of
p(x).

Example 2.5. We consider the polynomial p(x) = 4� x3⊕3� x2⊕2� x⊕4 and note the corresponding lines.
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The graph of y = p(x) is a piecewise linear function with two corners in x = −1 and x = 2, is possible to
factor p(x) in following way:

P(x) = 4 � (x ⊕ −1)2 � (x ⊕ 2)

The roots of the polynomial p(x) are defined as the set of corners that appear in the graph of the function
of the same polynomial. Let a = (−1, 1) and b = (2, 4) be corners of p(x) and also, let Ma and Mb be matrices
defined as:

Ma =

(
1 1
−1 1

)
Mb =

(
1 1
2 4

)
The columns of the matrices are the directions of the two lines coming out from a and b respectively.

Observe that the determinants of these two matrices are exactly the exponents of the two linear forms used
in the decomposition of p(x) as a product of linear terms. The following result generalizes the above.

Theorem 2.6. Any tropical polynomial of degree n factorizes as the product of n linear polynomials.

Proof.
Let p be a tropical polynomial of degree n. It is clear that the graph generated by this polynomial is

composed of lines and segments. Let y1 and y2 be consecutive lines in the graph of p(x) with y1 = a j + x j

and y2 = ai + xi, the corresponding directional matrix for the roots pi j is

p(x) =

(
1 1
i j

)
For every pi j is associated the factor

(
x ⊕ xi−a j

j−i

) j−i
with j1 < . . . < jr, the indexes of roots of p(x). It is a

straightforward calculation (done comparing with the graph of p(x)) to see that

P(x) = an �

(
x ⊕

ai j − air−1

ir − ir−1

)ir−ir−1

� . . . �

(
x ⊕

ai2 − ai1

i2 − i1

)i2−i1

Theorem 2.7. (Fundamental theorem of algebra) Let p be a tropical polynomial of degree n, then p(x) =

an � (x⊕ x1)n1 � ...� (x⊕ xr)nr with n1 + n2 + ...+ nr = n and x1, x2, . . . , xr are singular points of graphs of p.
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This result is an immediate consequence of the theorem 2.6, taking into account the multiplicity of the roots.
Other consequence of this result, is that all polynomial equation has solution in Rmin.

Corollary 2.8. Rmin is algebraically closed.

Theorem 2.9. If P : R→ R is a tropical polynomial, then the the following properties are satisfied.

1. P is continuous.
2. P is piecewise linear, where the number of piecewise is finite.

3. P is concave, namely, P
( x + y

2

)
≥

1
2

(P(x) + P(y)) for all x, y ∈ R

1 and 2 is a immediate consequence of definitions, for 3 we have

P
( x + y

2

)
= an �

( x + y
2

)n
⊕ an−1 �

( x + y
2

)n−1
⊕ . . . ⊕ a0

= min{an + n
( x + y

2

)
, an−1 + (n − 1)

( x + y
2

)
, . . . , a0}

= min{an +
nx + ny

2
, an−1 +

(n − 1)x + (n − 1)y
2

, . . . , a0}

=
1
2

min{2an + nx + ny, 2an−1 + (n − 1)x + (n − 1)y, . . . , 2a0}

≥
1
2
{min{an + nx, an−1(n − 1)x, . . . , a0} + min{an + ny, an−1(n − 1)y, . . . , a0}

=
1
2

[p(x) + p(y)]

Each function that satisfy above properties can be represented as the minimum of a finite set of linear
functions

3. Semiring of polynomials

In this section we will study the algebraic properties of polynomials, seeing them as elements of a certain
tropical semiring. Let (F,+, ·,≤) be an ordered field and∞ = S up(F). Consider the extension Fmin = F∪{∞}
and we define the maps

� : Fmin × Fmin → Fmin ⊕ : Fmin × Fmin → Fmin

�(x, y) = x + y ⊕(x, y) =
{
y i f y ≤ x
x i f x ≤ y

}
It is clear that � and ⊕ is well defined, it will denote as �(x, y) = x�y and ⊕(x, y) = x⊕y. It can verified that
(Fmin,⊕,�) is a unital semiring, since � is distributive with respect to ⊕, which identities are respectively
1min = 0 y 0min = ∞.
We will define Fmin[x] as the set of all equivalence classes of symbols p(x) = an � xn ⊕ . . . a1 � x⊕ a0, where
an, an−1, . . . , a0 are elements in Fmin and p ∼ q if and only if p(x) = q(x) for any x in Fmin. Every element of
Fmin[x] will be denominate as tropical polynomial.

Definition 3.1. If p(x) = an� xn⊕ . . . a1� x⊕a0 and q(x) = bm� xm⊕ . . . b1� x⊕b0, are elements in Fmin[x].
We will define the tropical sum as p(x) ⊕ q(x) = c0 ⊕ c1 � x ⊕ . . . ⊕ ct xt, where ci = ai ⊕ bi for i = 1, 2, ..., t
and t = max{deg(p), deg(q)}, moreover ai = 0min if i > n and bi = 0min when i > m.
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In other words the sum of two tropical polynomials is performed by tropical sum corresponding coefficients
of their similar terms, the most complicated operation is the one that we have to define in Fmin[x], it is the
multiplication.

Definition 3.2. If p(x) = an�xn⊕. . . a1�x⊕a0 and q(x) = am�xm⊕. . . a1�x⊕a0, are elements in Fmin[x], then
of multiplication is defined as p(x)�q(x) = c0⊕c1� x⊕ . . .⊕ck� xk, where ct = at�b0⊕at−1�b1⊕ . . .⊕a0�bt

Example 3.3. Let p(x) = 3� x3 ⊕ 2� x2 ⊕−1 and q(x) = 5� x4 ⊕ 3� x3 ⊕−1� x⊕ 4 be elements of Qmin[x],
we have

p(x) ⊕ q(x) = (3 � x3 ⊕ 2 � x2 ⊕ −1) ⊕ (5 � x4 ⊕ 3 � x3 ⊕ −1 � x ⊕ 4)

= 5 � x4 ⊕ (3 � x3 ⊕ 3 � x3) ⊕ 2 � x2 ⊕ −1 � x ⊕ (−1 ⊕ 4)

= 5 � x4 ⊕ 3 � x3 ⊕ 2 � x2 ⊕ −1 � x ⊕ −1

For p(x) � q(x) we have:

c0 = − 1 � 4 = 3
c1 =0min � 4 ⊕ 2 � −1 = 0min ⊕ 1 = 1
c2 =2 � 4 ⊕ 0min � −1 ⊕ −1 � 0min = 6 ⊕ 0min ⊕ 0min = 6
c3 =3 � 4 ⊕ 2 � −1 ⊕ 0min � 0min ⊕ −1 � 3 = 7 ⊕ 1 ⊕ 0min ⊕ 2 = 1
c4 =0min � 4 ⊕ 3 � −1 ⊕ 2 � 0min ⊕ 0min � 3 ⊕ −1 � 5 = 0min ⊕ 2 ⊕ 0min ⊕ 0min ⊕ 4 = 2

Therefore, according to definition,

p(x) � q(x) = 3 ⊕ 1 � x ⊕ 6 � x2 ⊕ 1 � x3 ⊕ 2 � x4

Thus (F[x],⊕,�) is a semiring, which is denominated Tropical semiring of polynomials. The zero of this
semiring is given by 0min(x) = 0min and unit 1min(x) = 1min for all x ∈ Fmin.

Theorem 3.4. If p(x) and q(x) are two different elements of 0min(x) in Fmin[x], then deg(p(x) � q(x)) =

deg(p(x)) � deg(q(x)) .

Let p(x) = an�xn⊕. . . a1�x⊕a0 and q(x) = bm�xm⊕. . . b1�x⊕b0 be elements of Fmin[x], with an and bm

being different to 0min. Hence deg(p(x)) = n and deg(q(x)) = m, moreover p(x)�q(x) = c0⊕c1�x⊕. . .⊕ck�xk

where ci = ai � b0 ⊕ . . . ⊕ a0 � bi. Therefore
cm+n = am+n � b0 ⊕ . . . ⊕ am+1 � bn−1 ⊕ am � bn ⊕ am−1 � bn+1 ⊕ . . . ⊕ a0 � bm+n

= am � bn
if i > m + n then the terms ci are of form a j � bi− j, since i = j + (i − j) > m + n then j > m and i − j > n and
hence ci = 0min for every i > m + n. It is verified that cm+n is the highest coefficient that is different to 0min.
Finally
deg(p(x) � q(x)) = m + n = deg(p(x)) � deg(q(x))

Corollary 3.5. If p(x) and q(x) are elements of Fmin[x] wich is different to 0min, then deg(p(x)) ≤ deg(p(x)�
q(x)).

deg(P(x) � Q(x)) = deg(P(x)) � deg(Q(x))
≥ deg(P(x))

We generalize certain results obtained in section 2, whose proofs are similar.
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Proposition 3.6. If p(x) y q(x) are elements of Fmin[x], such that p(x) = q(x) for every x in Fmin, then
deg(p) = deg(q).

Theorem 3.7. If F is an Archimedean field, then any tropical polynomial of degree n in Fmin[x] factorizes
as the product of n linear polynomials.

Given x, y ∈ F, such that x ≤ y. Archimedean property imply there exist z ∈ F such that x ≤ z ≤ y, thus
we obtain that p ∈ Fmin[x] is composed of lines and segments. Finally this result is concluded by performing
a analogous procedure of the Theorem 2.6.

As an immediate consequence of this result it is possible to generalize the fundamental theorem of
tropical algebra taking into account the multiplicity of the roots, which is enunciated below.

Theorem 3.8. Let F be an Archimedean field and p a tropical polynomial of degree n en Fmin[x], then
p(x) = an � (x ⊕ x1)n1 � ... � (x ⊕ xr)nr with n1 + n2 + ... + nr = n and x1, x2, . . . , xr are singular points of
graph of p.
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