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Abstract

In the present work some integral inequalities that involve the k−Beta function and stochastic processes whose absolute
values posses the property of convexity, or P−convexity, s−convexity in the second sense or (m, h1, h2)−convexity are
established. Similarly, some others integral inequalities for stochastic processes whose r−th powers of its absolute va-
lues posses these kind of generalized convexity are established making use of the Hölder’s inequality and power mean
inequality.
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Resumen

En el presente trabajo se establecen algunas desigualdades integrales que involucran la función k-Beta y procesos es-
tocásticos cuyos valores absolutos poseen la propiedad de convexidad, o P−convexidad, s−convexidad en segundo sen-
tido o (m, h1, h2)−convexidad. Del mismo modo, se encuentran otras desigualdades integrales para procesos estocásticos
cuyas r-ésimas potencias de sus valores absolutos poseen este tipo de convexidad generalizada haciendo uso de la de-
sigualdad de Hölder y la desigualdad de media de potencias.

Palabras claves: Desigualdades integrales, Función k−Beta , Procesos estocástios convexos generalizados
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1. Introduction

Convexity is a basic notion in geometry, but it is also widely used in other areas of mathematics. The
use of techniques of convexity appears in many branches of mathematics and sciences, such as Theory
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of Optimization and Theory of Inequalities, Functional Analysis, Mathematical Programming and Game
Theory, Theory of Numbers, Variational Calculus and its interrelation with these branches shows itself day
by day deeper and fruitful.

A function f : I → R is said to be convex if for all x, y ∈ I and t ∈ [0, 1] the inequality

f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y)

holds. Over time, several problems and applications have arisen, and these have given rise to generalizations
of the concept of convex function, and also numerous works of investigation have been realized extending
results on inequalities for this kind of convexity: quasi-convexity [17], s−convexity in the first and second
sense [2], logarithmically convexity [1], m−convex [14], (s, η)−convex [24] and others.

The study on convex stochastic processes began in 1974 when B. Nagy applied a characterization of mea-
surable stochastic processes to solving a generalization of the (additive) Cauchy functional equation [12].
In 1980, K. Nikodem considered convex stochastic processes [13]. In 1995,A. Skowronski obtained some
further results on convex stochastic processes, which generalize some known properties of convex functions
[21]. From that moment many researchers began to merge the properties of generalized convexity with the
stochastic processes. By example, in the year 2014, E. Set et. al. investigated Hermite-Hadamard type inequa-
lities for s−convex stochastic processes in the second sense [16], in 2015 M. Tomar et. al. worked on log-
convex stochastic processes [23], recently, in 2018, the author introduced the concept of (m, h1, h2)−convex
stochastic processes and related it to some inequalities for fractional integrals [8]. For other results related
to stochastic processes see [3],[5],[7],[11],[18] and [19], where further references are given.

Following this line of research, the present work aims to find some integral inequalities that involve the
k−Beta function and the stochastic processes which absolute value are convex, P−convex, s−convex in the
second sense or (m, h1, h2)−convex.

2. Preliminaries

The following notions corresponds to ordinary and convex Stochastic Process. References about it can
be found in [9, 10, 11, 20, 21].

Definition 2.1. Let (Ω,A, µ) be an arbitrary probability space. A function X : Ω → R is called a random
variable if it is A-measurable. Let I ⊂ R be time. A collection of random variable X(t,w), t ∈ I with values
in R is called a stochastic processes.

1. If X(t,w) takes values in S = Rd if is called vector-valued stochastic process.
2. If the time I is a discrete subset of R, then X(t,w) is called a discrete time stochastic process.
3. If the time I is an interval in R, it is called a stochastic process with continuous time.

Definition 2.2. Let (Ω,A, µ) be a probability space and I ⊂ R be an interval. We say that the stochastic
process X : I ×Ω→ R is called

1. Continuous in probability in the interval I if for all t0 ∈ I we have

µ − lı́m
t→t0

X(t, ·) = X(t0, ·),

where µ − lı́m denotes the limit in probability.
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2. Mean-square continuous in the interval I if for all t0 ∈ I

µ − lı́m
t→t0

E(X(t, ·) − X(t0, ·)) = 0,

where E(X(t, ·)) denote the expectation value of the random variable X(t, ·).
3. Increasing (decreasing) if for all u, v ∈ I such that t < s,

X(u, ·) ≤ X(v, ·), (X(u, ·) ≥ X(v, ·)).

4. Monotonic if it’s increasing or decreasing.
5. Differentiable at a point t ∈ I if there is a random variable X′(t, ·) : I ×Ω→ R , such that

X′(t, ·) = µ − lı́m
t→t0

X(t, ·) − X(t0, ·)
t − t0

.

We say that a stochastic process X : I × Ω → R is continuous (differentiable) if it is continuous (diffe-
rentiable) at every point of the interval I (See [9], [11],[21]).

Definition 2.3. Let (Ω,A, µ) be a probability space I ⊂ R be an interval with E(X(t)2) < ∞ for all t ∈ I.
Let [a, b] ⊂ I, a = t0 < t1 < ... < tn = b be a partition of [a, b] and θk ∈ [tk−1, tk] for k = 1, 2, ..., n. A random
variable Y : Ω → R is called mean-square integral of the process X(t, ·) on [a, b] if the following identity
holds:

lı́m
n→∞

E

 ∞∑
k=1

X(θk, ·)(tk − tk−1) − Y(·)

2

= 0,

then we can write ∫ b

a
X(t, ·)dt = Y(·) (a.e.).

Also, mean square integral operator is increasing, that is,∫ b

a
X(t, ·)dt ≤

∫ b

a
Z(t, ·)dt (a.e.)

where X(t, ·) ≤ Z(t, ·) in [a, b].
For further reading on stochastic calculus, reader may refer to [4], [19] and [22].
The following definition can be found in the works of D. Kotrys [10], E. Set [16] and A. Skowronski

[20].

Definition 2.4. Set (Ω,A, P) be a probability space and I ⊂ R be an interval. We say that a stochastic
process X : I ×Ω→ R is

1. Convex if the inequality

X(λu + (1 − λ)v, ·) ≤ λX(u, ·) + (1 − λ)X(v, ·) (1)

holds almost everywhere for all u, v ∈ I and λ ∈ [0, 1].
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2. P−convex if the inequality
X(λu + (1 − λ)v, ·) ≤ X(u, ·) + X(v, ·) (2)

holds almost everywhere for all u, v ∈ I and λ ∈ [0, 1]
3. s−convex in the second sense if the inequality

X(λu + (1 − λ)v, ·) ≤ λsX(u, ·) + (1 − λ)sX(v, ·) (3)

holds almost everywhere for all u, v ∈ I and λ ∈ [0, 1] and for some fixed s ∈ (0, 1].

This is one of the basis for the development of this work.

Definition 2.5. [8] Let h1, h2 : [0, 1] → R be a non negative functions, where h1, h2 . 0, and m ∈ (0, 1] .
We say that a stochastic process X : I ×Ω→ R is a (m, h1, h2)−convex if

X (ta + m(1 − t)b, ·) ≤ h1(t)X(a, ·) + mh2(t)X (b, ·) (a.e.)

for all a, b ∈ I and t ∈ [0, 1] .

Also, in the development of this work we use the k−Beta function and it is useful recall some notes about
it. From the work of R. Diaz y E. Pariguan [6] it is extracted the following.

Definition 2.6. Let x ∈ C, k ∈ R and n ∈ N+ For k > 0, the Pochhammer k−symbol is given by

(x)n,k = x(x + k)(x + 2k) · · · (x + (n − 1)k).

Definition 2.7. For k > 0, the k−Gamma function Γk is given by

Γk(x) = lı́m
n→∞

n!kn(nk)
x
k −1

(x)n,k
x ∈ C \ kZ−.

Definition 2.8. The k−Beta function Bk(x, y) is given by

Bk(x, y) =
Γk(x)Γk(y)
Γk(x + y)

Re(x) > 0,Re(y) > 0.

Also, the same authors established an integral representation for the k−Beta function as follow [6, Proposi-
tion 14]:

Bk(x, y) =
1
k

∫ 1

0
t

x
k −1(1 − t)

y
k−1dt,

also a property follows from the definition, as it can be sawn in [15]:

Bk(x + k, y) =
x

x + y
Bk(x, y) and Bk(x, y + k) =

y
x + y

Bk(x, y). (4)

Some others properties of the k−Beta functions, and also for k−Beta function with several variables, can be
found in the work of M. Rehman et. al. [15].

With these notions it is presented the main results of this work.
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3. Main Results

Lemma 3.1. Let X : I × Ω → R be a mean square continuous and mean square integrable stochastic
process. Then the equality∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du = (b − a)

p+q
k +1

∫ 1

0
(1 − t)p/k tq/kX (ta + (1 − t)b, ·) dt

holds for some fixed p, q, k > 0.

Proof. Let u = ta + (1 − t)b. Then t = (b − u) / (b − a) , 1 − t = (u − a) /(b − a) and dt = −du/(b − a), so∫ 1

0
(1 − t)p/k tq/kX (ta + (1 − t)b, ·) dt =

1

(b − a)
p
k +

q
k +1

∫ b

a
(u − a)p/k (b − u)q/kX (u, ·) du.

The proof is complete.
The following results for stochastic processes whose absolute values are convex, including r−th powers

of them, are established.

Theorem 3.2. Let X : I × Ω → R be a mean square continuous and mean square integrable stochastic
process. Let p, q, k > 0, if |X| is convex on [a, b], where a, b ∈ I and a < b, then the following inequality
holds almost everywhere∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (5)

≤ (b − a)
p+q

k +1 kBk(p, q)
(p + q)3,k

(
(q)2,k p |X (a, ·)| + (p)2,k q |X (b, ·)|

)
.

Proof. Using Lemma 3.1, the convexity of |X|, the definition of the k−Beta function and the property (4),
we have ∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)| dt

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k (t |X (a, ·)| + (1 − t) |X (b, ·)|) dt

= (b − a)
p+q

k +1
(
|X(a, ·)|

∫ 1

0
(1 − t)p/k tq/k+1dt + |X(b, ·)|

∫ 1

0
(1 − t)p/k+1 tq/kdt

)
= (b − a)

p+q
k +1 k (Bk(p + k, q + 2k) |X (a, ·)| + Bk(p + 2k, q + k) |X (b, ·)|)

= (b − a)
p+q

k +1 kBk(p, q)
(

(q)2,k p
(p + q)3,k

|X (a, ·)| +
(p)2,k q

(p + q)3,k
|X (b, ·)|

)
The proof is complete.
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Theorem 3.3. Let X : I × Ω → R be a mean square continuous and mean square integrable stochastic
process. Let p, q, k > 0, if |X|r is convex on [a, b] for r > 1, where a, b ∈ I and a < b, then the following
inequality holds almost everywhere∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (6)

≤ 2−1/r (b − a)
p+q

k +1
(

kpq
(lp + lq)2,k

Bk(lp, lq)
)1/l

(|X(a, ·)|r + |X (b, ·)|r)1/r ,

where (1/l) + (1/r) = 1.

Proof. From Lemma 3.1 and using the Hölder inequality we have∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (7)

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)| dt

≤ (b − a)p+q+1
(∫ 1

0
(1 − t)lp/k tlq/kdt

)1/l (∫ 1

0
|X (ta + (1 − t)b, ·)|r dt

)1/r

.

Since |X|r is a convex stochastic process then∫ 1

0
|X (ta + (1 − t)b, ·)|r dt ≤

∫ 1

0
t |X(a, ·)|r + (1 − t) |X (b, ·)|r dt (8)

=
|X(a, ·)|r + |X(b, ·)|r

2
,

and using the definition of the k−Beta function and the property (4), we get∫ 1

0
(1 − t)lp/k tlq/kdt = kBk(lp + k, lq + k)

= k
pq

(lp + lq)2,k
Bk(lp, lq) (9)

So replacing (8) and (9) in (7) it is attained the required inequality (6).
The proof is complete.

Theorem 3.4. Let X : I × Ω → R be a mean square continuous and mean square integrable stochastic
process. Let p, q, k > 0, if |X|r is convex on [a, b] for r > 1, where a, b ∈ I and a < b, then the following
inequality holds almost everywhere∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (10)

≤ k (b − a)
p+q

k +1
[

pq
(p + q)2,k

Bk(p, q)
]1−1/r

×(
(q)2,k p

(p + q)3,k
Bk(p, q) |X(a, ·)|r +

(p)2,k q
(p + q)3,k

Bk(p, q) |X (b, ·)|r
)1/r

.
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Proof. From Lemma 3.1 and using the power mean inequality for r ≥ 1 we have∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)| dt

≤ (b − a)
p+q

k +1
(∫ 1

0
(1 − t)p/k tq/kdt

)1−1/r

×(∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)|r dt

)1/r

.

Making use of the convexity of the stochastic process |X|r and the definition the k−Beta function, we get∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)|r dt (11)

≤

∫ 1

0
(1 − t)p/k tq/k (t |X (a, ·)|r + (1 − t) |X (b, ·)|r) dt

= k
(q)2,k p

(p + q)3,k
Bk(p, q) |X(a, ·)|r + k

(p)2,k q
(p + q)3,k

Bk(p, q) |X (b, ·)|r .

Replacing (11) in the previous inequality it is attained the desired inequality (10).
The proof is complete.
The following results for stochastic processes whose absolute values are P−convex, including r−th po-

wers of them, are established.

Theorem 3.5. Let X : I × Ω → R be a mean square continuous and mean square integrable stochastic
process. Let p, q, k > 0, if |X| is P−convex on [a, b] where a, b ∈ I and a < b, then the following inequality
holds almost everywhere∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (12)

≤ (b − a)
p+q

k +1 kpq
(p + q)2,k

Bk(p, q) (|X(a, ·)| + |X (b, ·)|) .

Proof. Using Lemma 3.1 , the definition of the k−Beta function and the P−convexity of |X| , we have∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)| dt

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k (|X (a, ·)| + |X (b, ·)|) dt

= (|X (a, ·)| + |X (b, ·)|) (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/kdt

= k (b − a)
p+q

k +1 pq
(p + q)2,k

Bk(p, q) (|X(a, ·)| + |X (b, ·)|) .

The proof is complete.
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Theorem 3.6. Let X : I × Ω → R be a mean square continuous and mean square integrable stochastic
process. Let p, q, k > 0, if |X|r is P−convex on [a, b] for r > 1, where a, b ∈ I and a < b, then the following
inequality holds almost everywhere∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (13)

≤ (b − a)
p+q

k +1
[

kpq
(lp + lq)2,k

Bk(lp, lq)
]1/l

(|X(a, ·)|r + |X (b, ·)|r)1/r ,

where (1/l) + (1/r) = 1.

Proof. From Lemma 3.1 and using the Hölder inequality we have∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (14)

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)| dt

≤ (b − a)
p+q

k +1
(∫ 1

0
(1 − t)lp/k tlq/kdt

)1/l (∫ 1

0
|X (ta + (1 − t)b, ·)|r dt

)1/r

.

Since |X|r is P−convex Stochastic process then∫ 1

0
|X (ta + (1 − t)b, ·)|r dt ≤ |X(a, ·)|r + |X (b, ·)|r , (15)

and using the definition of the k−Beta function we get∫ 1

0
(1 − t)lp/k tlq/kdt = kBk(lp + k, lq + k)

=
kpq

(lp + lq)2,k
Bk(lp, lq) (16)

So replacing (15) and (16) in (14) it is attained the required inequality (13).
The proof is complete.

Theorem 3.7. Let X : I × Ω → R be a mean square continuous and mean square integrable stochastic
process. Let p, q, k > 0, if |X|r is P−convex on [a, b] for r > 1, where a, b ∈ I and a < b, then the following
inequality holds almost everywhere∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (17)

≤ (b − a)
p+q

k +1 kpq
(p + q)2,k

Bk(p, q) (|X(a, ·)|r + |X (b, ·)|r)1/r .

Proof. From Lemma 3.1 and using the power mean inequality for r ≥ 1 and the P−convexity of |X|r we
have ∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du

8
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≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)| dt

≤ (b − a)
p+q

k +1
(∫ 1

0
(1 − t)p/k tq/k

)1−1/r (∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)|r dt

)1/r

≤ (b − a)
p+q

k +1
(∫ 1

0
(1 − t)p/k tq/k

)1−1/r

×

(|X(a, ·)|r + |X (b, ·)|r)1/l
(∫ 1

0
(1 − t)p/k tq/kdt

)1/r

= k (b − a)
p+q

k +1 pq
(p + q)2,k

Bk(p, q) (|X(a, ·)|r + |X (b, ·)|r)1/r .

The proof is complete.
The following results for stochastic processes whose absolute values are s−convex in the second sense,

including r−th powers of them, are established.The following results are established for s−convex stochastic
processes.

Theorem 3.8. Let X : I × Ω → R be a mean square continuous and mean square integrable stochastic
process. Let p, q, k > 0, if |X| is s−convex in the second sense on [a, b] for some s ∈ (0, 1], where a, b ∈ I
and a < b, then the following inequality holds almost everywhere∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (18)

≤ k (b − a)
p+q

k +1 (I1Bk (p, , q + ks)) |X (a, ·)| + I2Bk (p + ks, q) |X (b, ·)|) .

where

I1 =
p(q + ks)

(p + q + ks)2,k
and I2 =

(p + ks)q
(p + q + ks)2,k

.

Proof. Using Lemma 3.1, the definition of the k−Beta function and the s−convexity of |X| , we have∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)| dt

≤ (b − a)
p+q
+

1
∫ 1

0
(1 − t)p/k tq/k (ts |X (a, ·)| + (1 − t)s |X (b, ·)|) dt

≤ (b − a)
p+q

k +1
(
|X (a, ·)|

∫ 1

0
(1 − t)p/k t

q
k +sdt + |X (b, ·)|

∫ 1

0
(1 − t)

p
k +s tqdt

)
= k (b − a)

p+q
k +1 (|X (a, ·)| Bk (p + k, q + k(s + 1)) + |X (b, ·)| Bk (p + k(s + 1), q + k)) ,

then applying the property (4), we obtain the desired result.
The proof is complete.

9
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Theorem 3.9. Let X : I × Ω → R be a mean square continuous and mean square integrable stochastic
process. Let p, q, k > 0, if |X|r is s−convex in the second sense on [a, b] for r > 1 and some s ∈ (0, 1], where
a, b ∈ I and a < b, then the following inequality holds almost every where∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (19)

≤ (b − a)
p+q

k +1 (s + 1)−1/r
[

kpq
(lp + lq)2,k

Bk(lp, lq)
]1/l

(|X(a, ·)|r + |X (b, ·)|r)1/r

where (1/l) + (1/r) = 1.

Proof. From Lemma 3.1 and using the Hölder inequality we have∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (20)

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)| dt

≤ (b − a)
p+q

k +1
(∫ 1

0
(1 − t)lp/k tlq/kdt

)1/l (∫ 1

0
|X (ta + (1 − t)b, ·)|r dt

)1/r

.

Since |X|r is s−convex stochastic process in the second sense then∫ 1

0
|X (ta + (1 − t)b, ·)|r dt (21)

≤ |X(a, ·)|r
∫ 1

0
tsdt + |X (b, ·)|r

∫ 1

0
(1 − t)sdt

=
|X(a, ·)|r + |X (b, ·)|r

s + 1
,

and using the definition of the k−Beta function we get∫ 1

0
(1 − t)lp/k tlq/kdt = kBk(lp + k, lq + k)

= k
pq

(lp + lq)2,k
Bk(lp, lq) (22)

So, replacing (21) and (22) in (20) it is attained the desired inequality (19).
The proof is complete.

Theorem 3.10. Let X : I × Ω → R be a mean square continuous and mean square integrable stochastic
process. Let p, q, k > 0, if |X|r is s−convex in the second sense on [a, b] for r > 1 and s ∈ (0, 1], where
a, b ∈ I with a < b, then the following inequality holds almost everywhere∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (23)

≤ k (b − a)
p+q

k +1
(

pq
(p + q)2,k

Bk(p, q)
)1−1/r

×(
|X(a, ·)|r

p(q + ks)
(p + q + ks)2,k

Bk (p, q + ks) + |X(b, ·)|r
(p + ks, q)

(p + q + ks)2,k
Bk (p + ks, q)

)1/r

10
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Proof. From Lemma 3.1 and using the power mean inequality for r ≥ 1 we have∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (24)

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)| dt

≤ (b − a)
p+q

k +1
(∫ 1

0
(1 − t)p/k tq/kdt

)1−1/r

×

(∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)|r dt

)1/r

.

Since |X|r is s−convex in the second sense and using the definition of the k−Beta function we get∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)|r dt

≤

∫ 1

0
(1 − t)p/k tq/k

(
ts |X(a, ·)|l + (1 − t)s |X(b, ·)|r

)
dt

≤ |X(a, ·)|r
∫ 1

0
(1 − t)p/k t

q
k +sdt + |X(b, ·)|r

∫ 1

0
(1 − t)

p
k +s tq/kdt

= k (|X(a, ·)|r Bk(p + k, q + k(s + 1)) + |X(b, ·)|r Bk(p + k(s + 1), q + k)) .

With this last result and again using the definition of the k−Beta function and the property (4) in the inequality
(31) we obtain∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du

≤ k (b − a)
p+q

k +1
(

pq
(p + q)2,k

Bk(p, q)
)1−1/r

×

(
|X(a, ·)|r

p(q + ks)
(p + q + ks)2,k

Bk (p, q + ks) + |X(b, ·)|r
(p + ks, q)

(p + q + ks)2,k
Bk (p + ks, q)

)1/r

The proof is complete.
The following results for stochastic processes whose absolute values are (m.h1, h2)−convex, including

r−th powers of them, are established.

Theorem 3.11. Let h1, h2 : [0, 1]→ R be a non negative functions, m ∈ (0, 1] and X : I×Ω→ R be a mean
square continuous and mean square integrable stochastic process. Let p, q, k > 0, if |X| is (m, h1, h2)−convex
on [a, b] , where a, b ∈ I and a < b, then the following inequality holds almost everywhere∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (25)

11
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≤ (b − a)
p+q

k +1 (|X (a, ·)| I(h1) + |X (b, ·)| I(h2)) ,

where

I(h1) =

∫ 1

0
(1 − t)p/k tq/kh1(t)dt

and

I(h2) =

∫ 1

0
(1 − t)p/k tq/kh2(t)dt.

Proof. Using Lemma 3.1, the definition of the k−Beta function and the (m, h1, h2)−convexity of |X| , we
have ∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)| dt

≤ (b − a)
p+q
+

1
∫ 1

0
(1 − t)p/k tq/k (h1(t) |X (a, ·)| + mh2(t) |X (b, ·)|) dt

= (b − a)
p+q

k +1 (|X (a, ·)| I(h1) + |X (b, ·)| I(h2)) ,

where

I(h1) =

∫ 1

0
(1 − t)p/k tq/kh1(t)dt

and

I(h2) =

∫ 1

0
(1 − t)p/k tq/kh2(t)dt.

The proof is complete.

Remark 3.12. If in Theorem 3.11 we choose m = 1, h1(t) = t and h2(t) = 1 − t for t ∈ [0, 1] then we obtain
the inequality (5) in Theorem 3.2 for convex stochastic processes. Similarly, if we choose m = 1, h1(t) = 1
and h2(t) = 1 for t ∈ [0, 1] then we get the inequality (12) in Theorem 3.5 for P−convex stochastic processes.
And, finally, if we choose m = 1, h1(t) = ts and h2(t) = (1 − t)s for t ∈ [0, 1] and some fixed s ∈ (0, 1] it is
attained the inequality (19) in Theorem 3.9 for s−convex stochastic process in the second sense.

Theorem 3.13. Let h1, h2 : [0, 1]→ R be a non negative functions, m ∈ (0, 1] and X : I×Ω→ R be a mean
square continuous and mean square integrable stochastic process. Let p, q, k > 0, if |X|r is (m, h1, h2)−convex
on [a, b] for r > 1, where a, b ∈ I and a < b, then the following inequality holds almost everywhere∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (26)

≤ k1/ j (b − a)
p+q

k +1 (Bk( jp + k, jq + k))1/ j (|X (a, ·)|r I(h1) + |X (b, ·)|r mI(h2))1/r ,

12
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where

I(h1) =

∫ 1

0
(1 − t)p/k tq/kh1(t)dt,

I(h2) =

∫ 1

0
(1 − t)p/k tq/kh2(t)dt

and 1/ j + 1/r = 1.

Proof. From Lemma 3.1 and using the Hölder inequality we have∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (27)

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)| dt

≤ (b − a)
p+q

k +1
(∫ 1

0
(1 − t) jp/k t jq/kdt

)1/ j (∫ 1

0
|X (ta + (1 − t)b, ·)|l dt

)1/l

.

Since |X|l is (m, h1, h2)−convex stochastic process then∫ 1

0
|X (ta + (1 − t)b, ·)|l dt (28)

≤ |X(a, ·)|l
∫ 1

0
h1(t)dt + |X (b, ·)|l m

∫ 1

0
h2(t)dt,

and using the definition of the k−Beta function we get∫ 1

0
(1 − t) jp/k t jq/kdt = kBk( jp + k, jq + k). (29)

So, replacing (28) and (29) in (27) it is attained the desired inequality (26).
The proof is complete.

Remark 3.14. If in Theorem 3.13 we choose m = 1, h1(t) = t and h2(t) = 1 − t for t ∈ [0, 1] then we obtain
the inequality (6) in Theorem 3.3 for convex stochastic processes. Similarly, if we choose m = 1, h1(t) = 1
and h2(t) = 1 for t ∈ [0, 1] then we get the inequality (13) in Theorem 3.6 for P−convex stochastic processes.
And, finally, if we choose m = 1, h1(t) = ts and h2(t) = (1 − t)s for t ∈ [0, 1] and some fixed s ∈ (0, 1] it is
attained the inequality (19) in Theorem 3.9 for s−convex stochastic process in the second sense.

Theorem 3.15. Let h1, h2 : [0, 1]→ R be a non negative functions, m ∈ (0, 1] and X : I×Ω→ R be a mean
square continuous and mean square integrable stochastic process. Let p, q, k > 0, if |X|r is (m, h1, h2)−convex
on [a, b] for r > 1, where a, b ∈ I and a < b, then the following inequality holds almost everywhere∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (30)

13
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≤ k (b − a)
p+q

k +1
(

pq
(p + q)2,k

Bk(p, q)
)1−1/r

(|X(a, ·)|r I(h1) + |X(b, ·)|r mI(h2))1/r ,

where

I(h1) =

∫ 1

0
(1 − t)p/k tq/kh1(t)dt,

I(h2) =

∫ 1

0
(1 − t)p/k tq/kh2(t)dt.

Proof. From Lemma 3.1 and using the power mean inequality for l > 1 we have∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du (31)

≤ (b − a)
p+q

k +1
∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)| dt

≤ (b − a)
p+q

k +1
(∫ 1

0
(1 − t)p/k tq/kdt

)1−1/r

×(∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)|r dt

)1/r

.

Since |X|r is (m, h1, h2)−convex and using the definition of the k−Beta function we get∫ 1

0
(1 − t)p/k tq/k |X (ta + (1 − t)b, ·)|r dt

≤

∫ 1

0
(1 − t)p/k tq/k (h1(t) |X(a, ·)|r + mh2(t) |X(b, ·)|r) dt

≤ |X(a, ·)|r I(h1) + |X(b, ·)|r mI(h2),

where

I(h1) =

∫ 1

0
(1 − t)p/k tq/kh1(t)dt,

I(h2) =

∫ 1

0
(1 − t)p/k tq/kh2(t)dt.

With this last result and again using the definition of the k−Beta function in the inequality (31) we obtain∫ b

a
(u − a)p/k (b − u)q/k X(u, ·)du

≤ k (b − a)
p+q

k +1
(

pq
(p + q)2,k

Bk(p, q)
)1−1/r

(|X(a, ·)|r I(h1) + |X(b, ·)|r mI(h2))1/r .

The proof is complete.

Remark 3.16. If in Theorem 3.13 we choose m = 1, h1(t) = t and h2(t) = 1 − t for t ∈ [0, 1] then we obtain
the inequality (10) in Theorem 3.4 for convex stochastic processes. Similarly, if we choose m = 1, h1(t) = 1
and h2(t) = 1 for t ∈ [0, 1] then we get the inequality (17) in Theorem 3.7 for P−convex stochastic processes.
And, finally, if we choose m = 1, h1(t) = ts and h2(t) = (1 − t)s for t ∈ [0, 1] and some fixed s ∈ (0, 1] it is
attained the inequality (23) in Theorem 3.10 for s−convex stochastic process in the second sense.

14
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4. Conclusions

In the present article some integral inequalities involving the k−Beta function and stochastic processes
whose absolute values posses the convexity, P−convexity, s−convexity or (m, h1, h2)−convexity property,
including r−th powers of them, were established. Also, it is presented some consequences that derive from
the theorems and that affirm the character of generalization that is attributed to the (m, h1, h2)−convex sto-
chastic processes. Using this fact it is possible to find integral inequalities similar to those found in this
work using other types of generalized inequalities such as: Godunova-Levin convexity, (s,m)−convexity,
MT−convexity and others.

The author expect that this work will serve as stimulus for other research in this area.
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