

Abstract— Problem statement: Metaheuristic optimization algorithms have been taking more impulse

in order to improve processes and solve complex problems that require a high computing capacity. These

complex problems can have binary terms as variable decisions. There is steel a need for transforming the

traditional heuristic algorithms in tools able to handle binary variables.

Current tools: In 2008, the biogeography-based optimization (BBO) algorithm was presented for the first

time. This algorithm produced good results by using a model of species migration within ecosystems in order

to find the optimal points of benchmark functions. Similarly, ALO, a new optimizer based on the hunting of

ant-lion, was released in 2015. These algorithms can handle very well the benchmark functions when the

variables are continuous.

Proposal: In this paper, we present a modification to both types of algorithms (BBO and ALO) that will

improve the manner how the optimal points are found within the search space. The main modification to both

algorithms allows solving problems, in their target functions, with binary decision variables.

Main contributions for each algorithm: An important modification to the first algorithm is how species

migrate between ecosystems; this model is based on a modification to the proposal made in 2010. By adding

two important features, migration processes are randomly chosen, and a new method for species migration is

developed. The manner how species migrate thus becomes random between two migration models. The new

proposal for the ALO (second algorithm) solves optimization problems through two different binary random

models within the search space.

Validation: To evaluate the behavior of algorithms, fifteen benchmarking functions are used. In addition, a

comparison with other optimization algorithms, such as the Binary Particle Swarm Optimization and

Gravitational Search Algorithm (BPSOGSA), Genetic Algorithms (GA), and the Binary Bat Algorithm

(BBA), is made. We also demonstrate the proposed algorithms for a real-world binary optimization problem.

Index Terms—Biogeography-Based Optimization, Ant-Lion Optimizer, Binary Algorithm, Binary

Optimization.

Benchmark Functions Optimization Using Binary

Biogeography-Based Optimization with Aleatory-

Mixed Migration (BBBO-AMM) and Binary Ant-

Lion Optimizer (BALO)

 José L. Gutiérrez., Sergio R. Rivera.

{jlgutierreza, srriverar}@unal.edu.co

Universidad Nacional de Colombia.

Department of Electrical and Electronics Engineering

I. INTRODUCTION

Each year, metaheuristic optimization algorithms have been taking more impulse in order to improve

processes and solve complex problems that require a high computing capacity. Many of these algorithms

have been inspired by biological processes such as the Ant Colony Optimization (ACO) [1], Dolphin

Echolocation [2], Grey Wolf Optimizer (GWO) [3], among others. There are also methods inspired by natural

processes, such as the Gravitational Search Algorithm (GSA) [4], Ray Optimization [5], among others.

The advantage of these metaheuristic algorithms is their ease to solve different problems at high speed

and with great accuracy; this makes them major computing models compared to conventional optimization

techniques [6]. Despite their great computational capacity, it is evident that no heuristic algorithm is able to

solve all current optimization problems, as proved by analyzing search algorithms developed so far [7] that

is to say, solving certain problem does not allow a different one to be solved with the same technique.

The algorithms modified on this article, such as BBO [8] [9] and ALO [10], were developed based on

the movement of groups of species between habitats and the movement of colonies of ant-lions in quest of

food, respectively. Both types of algorithms usually operate within continuous search spaces, thus allowing

for very short computation times; however, they sometimes can generate errors in search of a global minimum

when finding a local minimum.

Despite optimization problems with discrete binary search, algorithms that allow moving between these

spaces in a binary fashion must be developed. Nowadays, some algorithms have their binary version, such as

Binary Harmony Search Algorithm (BHSA) [11] or Binary Magnetic Optimization Algorithm (BMOA) [12]

This article presents the binary version of BBO algorithm with modifications to the type of migration

performed in order to find a more optimal search model. It also presents the binary version of ALO algorithm

to work on search spaces ranging between "0" and "1" and vice versa. The rest of the article is organized as

follows:

Section II presents an introduction to BBO algorithm with an explanation of its operation. Section III

presents an introduction to ALO algorithm in its explanation. Section IV describes the operation of a binary

algorithm. Subsections IV.A and IV.B explain the modifications to BBO algorithm and ALO algorithm,

respectively. Section V presents the results of the proposed algorithms compared to those of other

optimization algorithms, such as the Binary Particle Swarm Optimization (BPSO) algorithm and a Genetic

Algorithm (GA), Binary Particle Swarm Optimization and Gravitational Search Algorithm (BPSOGSA), and

the Binary Bat Algorithm (BBA). Finally, section VI presents the results of a real-world binary optimization

problem.

II. BIOGEOGRAPHY-BASED OPTIMIZATION

Biogeography-based optimization is a model of heuristic optimization used for optimizing

multidimensional functions, that is, a multivariable model that can be used in discontinuous functions.

The principle of this model is based on the biological distribution of species within a habitat. Assuming

that certain habitats have a defined population, and considering that each habitat is isolated (Islands), species

within the habitat will increase or decrease depending on habitat suitability. A habitat is considered isolated

when conditions are not interchanged [8], [9].

Each habitat will have specific conditions that will allow certain geographical area to be home for each

species; these conditions may comprise, for instance, rain, food, vegetation, among others. Each condition is

known as Suitability Index Variable (SIV). All these features of each habitat, that is, the global of all variables

within each geographical area, will indicate how convenient for each species is to reside within this area.

Habitat Suitability Index (HSI) indicates how adequate each habitat is for its resident species [8], [9].

The population living within this habitat can be in two conditions: it may increase or decrease. In either

case, the population will tend to migrate to other places (immigration) and the habitat will tend to receive

species from other islands (emigration), depending on the number of species living within the habitat [8],

[9]. This interchange of species is beneficial to the habitat since it allows biological diversity to increase

within the ecosystem. Furthermore, it allows the number of species to constantly vary until finding a balance,

where the number of species emigrating corresponds to the number of species immigrating [8].

For the optimization algorithm, interchange of species is carried out considering a 𝜆𝑖 and 𝜇𝑖 parameter

that determines species immigration and emigration, respectively, within the habitat 𝐻𝑖. Whenever

interchange of species within certain area occurs, the area will be diversified and increase its HSI; with this,

the emigration rate increases according to the number of residents within the area, whereas the immigration

rate decreases due to species saturation. This indicates that the higher HSI is, the more static species

distribution will be within the habitat [8], [9].

For the algorithm, a good solution can be considered in case of a high-HSI habitat, that is, the level of

HSI indicates how good the solution is (Fitness). Similarly, a low level of HSI indicates an unfavorable

solution. Likewise, it can be affirmed that the number of species in the solution is represented by HSI. A high

HSI indicates that solutions are more likely to share characteristics with others, that is, there is exchange of

information between habitats. By contrast, low-HSI habitats are more likely to receive information from other

systems [9].

The BBO algorithm has 2 very important features:

A. Migration

Migration is the operator that indicates the likelihood of improving the conditions of the habitat 𝐻𝑖. This is

used, mainly, as the probability that habitats share information between them. This migration depends on the

immigration rate 𝜆𝑖 since it determines if the species will leave the habitat 𝐻𝑖. In case the species decides to

immigrate, the target area will be selected based on its emigration rate 𝜇𝑗 [9].

𝑯𝒋(𝑺𝑰𝑽) → 𝑯𝒊(𝑺𝑰𝑽) (1)

To determine whether the information will be shared between habitats, a probabilistic approach is

performed. Given a probability𝑃𝑠ℎ𝑎𝑟𝑒, a solution is selected to be modified. To do this, the immigration rate

𝜆 is used. 𝜆 decides if any parameter of the SIV will be modified, that is, it selects a habitat and determines

if any condition of the system will be modified. If the parameter is to be modified, the emigration parameter

𝜇 of the other habitats determines the solution that will modify, in this case, traveling to the habitat where the

research is conducted.

Although the migratory strategy of this model is similar to those used in other genetic algorithms,

migration in BBO is used with current solutions; in addition, it is an adaptive process and not a reproductive

one as in other type of algorithms.

B. Mutation

It is a probabilistic operator which randomly modifies the SIV of the habitat based on the number of

species living there. This mutation is performed in order to increase population diversity within the system.

If we consider a low-HSI habitat, then mutation allows solutions within the habitat to be improved; likewise,

it operates with high-HSI systems, determining that solutions can be further improved.

Since HSI may vary with large-scale events directly affecting the number of species within the habitat

and, therefore, affecting the balance within the system, it was decided that the algorithm could model these

changes by mutating the SIV value [8], [9].

Each member of the population has an associated probability; this indicates how its existence is expected

within the solutions to the problem. Being directly related to the HSI value, very high or very low values are

considered improbable solutions; by contrast, the average HSI values are more likely to be selected. In case

of high (or low) HSI values, the solution will tend to mutate into another solution value given by the following

equation [8]:

𝒎(𝑺) = 𝒎𝒎𝒂𝒙 (
𝟏 − 𝑷𝒔

𝑷𝒎𝒂𝒙
⁄) (2)

where the value of 𝑚𝑚𝑎𝑥 is a parameter determined by the user; this is done with the aim of diversifying

the population and reducing the effect of selecting solutions with higher probability, since they will tend to

be dominant by ignoring other solution values.

C. Overview of BBO

BBO algorithm works with different migration rates depending on several factors. Distance from the

closest habitat, size habitat, climate, amount of food, and even human activity modify variation patterns of

species migrations [9]. Therefore, there must be restrictions on emigration and immigration rates determined

by:

𝜆0 ≥ ⋯ ≥ 𝜆𝑘 ≥ ⋯ ≥ 𝜆𝑛 = 0

𝝁𝟎 ≤ ⋯ ≤ 𝝁𝒌 ≤ ⋯ ≤ 𝝁𝒏 = 𝟎 (3)

for each 𝑘 = 0,1,⋯ , 𝑛 respectively, in order to model the behavior of species emigration and immigration

between habitats. It is known that the higher the number of species within a habitat is, the emigration rate

will tend to zero and the immigration rate will be higher. This does not occur when the habitat has few

species, hence the restrictions shown in (3).

Migration curves are models which allow analyzing possible behaviors of the species within the habitat

[13]. Various types of linear and non-linear models are employed, as shown in Figure 1.

Figure 1. Examples of migration models (modification based on [9])

III. ANT-LION OPTIMIZER

This algorithm was called Ant-Lion Optimizer for an insect belonging to the family Myrmeleontidae,

similar to a dragonfly [14]. The ant-lion hunts its prey by digging a cone-shaped pit where insects fall. If the

prey tries to escape from the trap, the ant-lion will throw sand to slide it into its jaw and then consume it [14].

The behavior of these insects, regarding nourishment, is related to their degree of hunger and the moon.

The hungrier they are, the deeper the holes will be and/or when the moon is full; this latter apparently occurs

thanks to their internal lunar clock [15].

Figure 2. Cone-shaped pit dug by the ant-lion (modification based on [10])

According to this, the ALO algorithm performs a movement through the search space simulating the

behavior of food and simulates the ant-lion's methods of hunting using traps. In this manner, the movement

of food is modeled with stochastic patterns by adding a random pattern, as shown below [10]:

𝑿(𝒕) = [𝟎, 𝒄𝒖𝒎𝒔𝒖𝒎(𝟐𝒓(𝒕𝟏) − 𝟏), 𝒄𝒖𝒎𝒔𝒖𝒎(𝟐𝒓(𝒕𝟐) − 𝟏),⋯ , 𝒄𝒖𝒎𝒔𝒖𝒎(𝟐𝒓(𝒕𝟑)) (4)

where 𝑐𝑢𝑚𝑠𝑢𝑚 calculates the cumulative sum, 𝑛 is the maximum number of iterations, 𝑡 indicates the

iteration used, and 𝑟(𝑡) is the stochastic function defined as:

𝒓(𝒕) = {
𝟏 𝒊𝒇 𝐫𝐚𝐧𝐝 > 𝟎. 𝟓
𝟎 𝒊𝒇 𝐫𝐚𝐧𝐝 ≤ 𝟎. 𝟓

 (5)

where 𝑡 shows the iteration being calculated and 𝑟𝑎𝑛𝑑 is a generator random number with uniform

distribution in an [0,1] interval.

The behavior shown by the ants is very similar to that of the particles in the PSO algorithm. To solve the

problems, each position of the ants is stored to then be evaluated in the function. If 𝐴𝑖𝑗 is the value of the

𝑖 − 𝑡ℎ dimension of the 𝑗 − 𝑡ℎ ant, the objective function will be evaluated as follows:

𝑴𝑶𝑨 =

[

𝒇([𝑨𝟏,𝟏, 𝑨𝟏,𝟐, ⋯ , 𝑨𝟏,𝒅])

𝒇([𝑨𝟐,𝟏, 𝑨𝟐,𝟐, ⋯ , 𝑨𝟐,𝒅])

⋮
𝒇([𝑨𝒏,𝟏, 𝑨𝒏,𝟐, ⋯ , 𝑨𝒏,𝒅])]

 (6)

where 𝑀𝑂𝐴 is the matrix of values, of each ant, obtained after being calculated from the function.

Additional to this modeling, the simulation of the ant-lions' location is performed; they are hidden

anywhere in the search space. Positions are also stored similarly to those of ants; the same calculation of

equation (6) is performed.

𝑴𝑶𝑨𝑳 =

[

𝒇([𝑨𝑳𝟏,𝟏, 𝑨𝑳𝟏,𝟐, ⋯ , 𝑨𝑳𝟏,𝒅])

𝒇([𝑨𝑳𝟐,𝟏, 𝑨𝑳𝟐,𝟐, ⋯ , 𝑨𝑳𝟐,𝒅])

⋮
𝒇([𝑨𝑳𝒏,𝟏, 𝑨𝑳𝒏,𝟐, ⋯ , 𝑨𝑳𝒏,𝒅])]

 (7)

As shown above for the case of ants, the matrix in (7) also shows values for the ant-lion in this case.

This algorithm has several characteristics explained below [14], [15]:

A. Ants' Random Path:

As explained at the beginning, an update on ants' position around the search space is made by limiting

their movement to prevent them from crossing the boundaries of the search space.

B. Trapped in the ant-lion's pit:

In the random ant's movements, the ant will come to fall into the trap at some point due to its random

movement when walking.

C. Building the trap:

To model the hunting capabilities of the ant-lion, the "Roulette Wheel" model is used. This model allows

selecting the pit where the ant was trapped. This selection is made based on fitness results, thus choosing the

trap with improved capabilities.

D. Sliding ants towards the ant-lion:

The ant-lion digs the pit according to its optimal value, in this case, simulating hunger and lunar phase.

However, the ant-lion throws sand to its prey to attract it into the center of the hole when it is trapped. The

simulation of this condition is performed by reducing the radius where the prey moves randomly.

E. Trapping the prey and rebuilding the pit:

When the prey is being drawn towards the ant-lion, the pit will be modified due to the prey's escape

attempts; once the food reaches the bottom of the pit, the ant-lion devours it. To simulate this behavior, the

ant-lion's position is updated with respect to the prey's position.

F. Elitism:

Apart from the above-mentioned characteristics, an elitist system is implemented to select and maintain

the best solutions; information loss in successive iterations of the algorithm is thus not allowed. In this

manner, each one of the best solutions is stored and considered an elite result; this allows affecting the random

movement of food within the search space.

G. ALO algorithm:

After defining the characteristics of the code, the algorithm works under 3 functions of ordered lists

which approximate the global optimum as a function:

𝑨𝑳𝑶(𝑨,𝑩, 𝑪) (8)

Where 𝐴 is a function generating the initial values of the solutions, 𝐵 manipulates the initial population

predicted by the 𝐴 function, and 𝐶, which is activated once the termination criterion is met. The 𝐴, 𝐵, 𝐶

functions are defined as follows

𝚽
𝑨
→{𝑴𝒂𝒏𝒕,𝑴𝑶𝑨,𝑴𝑨𝒏𝒕𝒍𝒊𝒐𝒏,𝑴𝑶𝑨𝑳} (9)

{𝑴𝒂𝒏𝒕,𝑴𝑨𝒏𝒕𝒍𝒊𝒐𝒏}
𝒃
→ {𝑴𝒂𝒏𝒕,𝑴𝑨𝒏𝒕𝒍𝒊𝒐𝒏}(10)

{𝑴𝒂𝒏𝒕,𝑴𝑨𝒏𝒕𝒍𝒊𝒐𝒏}
𝒄
→ {𝒕𝒓𝒖𝒆, 𝒇𝒂𝒍𝒔𝒆}(11)

where 𝑀𝑎𝑛𝑡 is the matrix of ants' position, 𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛 includes the ant-lions' position, 𝑀𝑂𝐴 contains the optimal

values of ants, and 𝑀𝑂𝐴𝐿 has the optimal values of ant-lions.

IV. BINARY ALGORITHMS

When optimization algorithms, especially bio-inspired ones, seek the minimum of functions, they may

seek around local minima, thus not ensuring high accuracy in results. The algorithm trying to find values

outside its search range is also a problem, since it remains between two values and cannot converge to the

desired value.

When the algorithm is used in a binary manner, these problems are avoided by working on a model that

supports only values of 1 or 0. Since any other number can be represented in a binary fashion, variables are

represented by using 15 bits. The overall dimensions of each function are given by [16]:

𝑫𝒊𝒎𝒉𝒂𝒃𝒊𝒕𝒂𝒕 = 𝑫𝒊𝒎𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 × 𝟏𝟓 (12)

where 𝐷𝑖𝑚ℎ𝑎𝑏𝑖𝑡𝑎𝑡 indicates the dimensions of each habitat within the system and 𝐷𝑖𝑚𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 are the

dimensions of each function. According to (12), dimensions of the particles is 75 for functions of dimension

5, and 450 for functions of dimension 30.

To describe the binary development, it should be noted that, for each dimension of the functions, a 15-

bit binary conversion is performed for each of them.

Figure 2. Binary conversion

After that, the first bit of each transformation is taken; these transformations will define their own sign:

if "0", it is said to be negative, and if "1", it is said to be positive.

Table 1. Single-modal test functions
FUNCTION DIM RANGE 𝒇𝒎𝒊𝒏

𝑓1(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 5 or 30 [0,1] 0

𝑓2(𝑥) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝑛

𝑖=1

𝑛

𝑖=1
 5 or 30 [0,1] 0

𝑓3(𝑥) = ∑ (∑ 𝑥𝑗

𝑖

𝑗−1
)

2𝑛

𝑖=1

5 or 30 [0,1] 0

𝑓4(𝑥) = max𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 5 or 30 [0,1] 0

𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1
 5 or 30 [0,1] 0

𝑓6(𝑥) = ∑ ([𝑥𝑖 + 0.5])2
𝑛

𝑖=1
 5 or 30 [0,1] 0

𝑓7(𝑥) = ∑ 𝑖𝑥𝑖
4

𝑛

𝑖=1
+ random[0,1] 5 or 30 [0,1] 0

Table 2. Multimodal test functions
FUNCTION DIM RANGE 𝒇𝒎𝒊𝒏

𝑓8(𝑥) = ∑−𝑥𝑖 sin (√|𝑥𝑖|)

𝑛

𝑖=1

 5 or 30 [0,1]
-418.9829

x Dim

𝑓9(𝑥) = ∑[𝑥𝑖
2 − 10cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 5 or 30 [0,1] 0

𝑓10(𝑥) = −20 exp(−0.2√
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

) − exp(
1

𝑛
∑𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑛

𝑖=1

) + 20 + 𝑒 5 or 30 [0,1] 0

𝑓11(𝑥) =
1

4000
∑𝑥𝑖

2

𝑛

𝑖=1

− ∏cos(
𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1 5 or 30 [0,1] 0

𝑓12(𝑥) =
𝜋

𝑛
{10 sin(𝜋𝑦1)∑(𝑦𝑖 − 1)2[1 + 10 sin2(𝜋𝑦𝑖+1)

𝑛

𝑖=1

+ (𝑦𝑛 − 1)2} + ∑𝑢(𝑥𝑖 , 10,100,4)

𝑛

𝑖=1

 5 or 30 [0,1] 0

𝑦𝑖 = 1 +
𝑥𝑖 + 1

4

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 > 𝑎
0 −𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 > −𝑎

𝑓13(𝑥) = 0.1 {sin2(3𝜋𝑥𝑖) + ∑(𝑥𝑖 − 1)2{1 + sin2(3𝜋𝑥𝑖)]

𝑛

𝑖=1

+ (𝑥𝑛 − 1)2[1 + sin2(2𝜋𝑥𝑛)]}

+ ∑𝑢(𝑥𝑖 , 5,100,4)

𝑛

𝑖=1

5 or 30 [0,1] 0

𝑓14(𝑥) = −∑sin(𝑥𝑖) ∙ (sin (
𝑖𝑥𝑖

𝑛
))

2𝑚𝑛

𝑖=1

, 𝑚 = 10 5 or 30 [0,1] -4.687

𝑓15(𝑥) = {[∑sin2(𝑥𝑖)

𝑛

𝑖=1

] − exp(−∑𝑥𝑖
2

𝑛

𝑖=1

)} ∙ exp [−∑𝑠𝑖𝑛2 (√|𝑥𝑖|)

𝑛

𝑖=1

] 5 or 30 [0,1] -1

Figure 4. Sign selection

Each 𝑿𝑩𝒌 is taken and converted from binary to decimal with the respective sign; 𝒏 has values that will

be computed within the algorithm. As shown in Figures 3 and 4, working with a binary system provides more

accuracy regarding the development of the algorithm, by sacrificing response times due to issues of large

calculations to be performed aimed at finding the optimal solution.

A. Binary Biogeography-based optimizer, proposed BBBO-AMM

When working on BBO algorithm, the above-mentioned modifications were made from dimension to

functions. Internally, the algorithm also had to be modified in order to obtain sufficient habitats according to

the new binary dimensions.

Another modification to the code was a variant of migration models presented in Figure 1; a random

selection between sinusoidal migration model and the out-of-phase sinusoidal model is performed, as shown

in Figure 5.

Figure 5. Simulated new migration model

B. Ant-lion binary optimizer, proposed BALO

For the ALO algorithm, the same procedure as that one performed for BBO is followed (see IV.A). The

change to functions in the search range is made and the work values are expanded according to the dimensions

of each function, as shown in Figure 3.

The difference between ALO and BBO is that ALO has no migration function; therefore, adding

elements to the algorithm is not necessary.

V. TEST AND PERFORMANCE OF PROPOSED ALGORITHMS

To verify the two algorithms mentioned in IV.A and IV.B, 15 benchmark functions are used. These

functions are separated into two different sets: single-modal functions and multimodal functions, as shown

in Table 1 and Table 2, respectively. It is worth mentioning that the search range of functions, being binary,

will only comprise 0 and 1. More accurate information about these functions can be found in [17], [18], [19],

and more deeply studied in [20], [21], [22].

The results obtained by the algorithms can be compared with the initial versions of BBO and ALO

algorithms [23]. A comparison using Binary Particle Swarm Optimization and Gravitational Search

Algorithm, Genetic Algorithms, and Binary Bat Algorithm is also made, as shown in Table 3. Table 3 shows

the results using a dimension 5 in the benchmarking functions. Additionally, it is presented the average (Ave)

and standard deviation (Std) of 15 runs. As shown in Table 3, the new algorithms have obtained better results

compared to the other algorithms. The results using a dimension of 30 in the benchmarking functions for the

proposed algorithms are presented in Table 4. A comparison using Binary Particle Swarm Optimization and

Gravitational Search Algorithm, and Binary Bat Algorithm is also made, as shown in Table 4. In this case,

the new algorithms also have obtained better results compared to the other algorithms.

Table 3. Results of test functions (5 dimensions)
f BPSOGSA GA BBA BBBO-AMM BALO

f1

Ave 0.753882 10.070500 0.000000 0.000000 0.000000

Std 0.744054 24.944500 0.000000 0.000000 0.000000

f2

Ave 0.158447 0.269483 0.000000 0.000000 0.000000

Std 0.121911 0.237880 0.000000 0.000000 0.000000

f3

Ave 45.286676 555.903900 0.001676 0.000000 0.000000

Std 94.452227 250.693000 0.002835 0.000000 0.000000

f4

Ave 2.464063 1.593750 0.006714 0.000000 0.000000

Std 2.429516 1.213480 0.004504 0.000000 0.000000

f5

Ave 281.414962 369.754500 42.306340 2.939208 3.874140

Std 667.874313 342.889300 90.840110 3.023899 0.179688

f6

Ave 8.093701 6.984222 0.001380 0.000299 0.370900

Std 17.670570 7.010388 0.002244 0.000306 0.112182

f7

Ave 0.006397 0.047174 0.002724 0.002427 0.000069

Std 0.008876 0.043587 0.002066 0.000877 0.000078

f8

Ave -979.813200 -929.324000 -2094.678000 -2094.678880 -1747.220000

Std 25.037740 27.952310 0.097177 0.097186 271.203101

f9

Ave 1.875194 2.189600 2.488134 0.878160 0.000000

Std 1.271683 0.833027 1.204948 1.023358 0.000000

f10

Ave 0.541234 1.399853 0.000005 0.000005 0.000000

Std 0.800463 1.338105 0.000005 0.000005 0.000000

f11

Ave 0.179551 0.706700 0.082874 0.040653 0.000000

Std 0.092974 0.322300 0.059624 0.018476 0.000000

f12

Ave 0.370201 0.191197 -5.723056 -6.115740 0.063160

Std 0.485135 0.244347 0.838137 0.027324 0.056554

f13

Ave 0.255321 0.193006 0.013475 0.007289 0.455900

Std 0.305777 0.254864 0.020621 0.009035 0.050934

f14

Ave -3.902076 -3.884920 -3.862056 -4.002700 -3.582546

Std 0.446362 0.717682 0.172965 0.009319 0.337560

f15

Ave 0.000317 0.001575 0.000030 0.000006 -1.000000

Std 0.000718 0.001603 0.000022 0.000001 0

Table 4. Results of test functions (30 dimensions)
f BPSOGSA BBA BBBO-AMM BALO

f1

Ave 3866.257983 730 0 0

Std 1437.537485 197 0 0

f2

Ave 37.99127171 11 0 0

Std 9.396961534 2 0 0

f3

Ave 27968.84947 14644 13100 0

Std 6803.046329 3993 4671 0

f4

Ave 55.07736442 22 14 0

Std 8.466992652 3 11 0

f5

Ave 6309639.467 60641.40230416030 377.14270326018 29.00000000000

Std 2564573.409 27486.05737483480 352.67830887436 0.00000000000

f6

Ave 3401.603578 791.72800930458 0.50764390821 5.99930760648

Std 1543.648334 141.55525559901 0.17091207924 0.44254266122

f7

Ave 2.640800742 0.30122779080 0.04152316862 0.00007322754

Std 2.42120684 0.10151718048 0.01473846813 0.00006872469

f8

Ave -7132.160017 -9011.78279072680 -10801.74426217690 -5309.21725024123

Std 864.9940034 741.94936489747 346.29435209321 481.35151993387

f9

Ave 82478.30087 20888.63312964420 23.03969033795 0.00000000000

Std 17365.80727 5094.93849527133 7.25751926788 0.00000000000

f10

Ave 11.0114596 7.28959839779 1.70637841518 0.00000000000

Std 1.096116914 0.90594927712 0.65279172258 0.00000000000

f11

Ave 37.16827297 7.81628152526 0.17281571537 0.00000000000

Std 7.83326925 1.40165056162 0.15065236324 0.00000000000

f12

Ave 1157.174018 120.26032397724 -4.30002313485 0.77827253380

Std 1436.354911 72.20438311236 1.24099875980 0.21143507960

f13

Ave 1236.329722 83.36264260857 0.69154785074 2.99832753160

Std 762.8826081 21.86075906021 0.15817651695 0.00528880947

f14

Ave -12.41688963 -15.24559508689 -20.22678864141 -8.05029392173

Std 1.573980008 0.97544276027 1.23249843567 1.21661039650

f15

Ave 7.00663E-12 0 0 -1.000000

Std 6.06052E-12 0 0 0

VI. STUDY IN A REAL CASE PROBLEM

To test the algorithms presented in this article, the study is based on the "Wind Farm Layout Optimization

Competition", organized by L'Institut de recherche en informatique de Toulouse [24]. This competition is

focused on reducing the cost of energy generated by a wind farm. This will help to verify the algorithms

presented. This contest mainly aims to choose the best location of the turbines under land restrictions and

avoid the turbulence effect.

To solve the problem, we must use the cost function equation:

𝒇𝒊𝒕𝒏𝒆𝒔𝒔 =
(𝑪𝑪∙𝑬𝑶𝑺)+𝒀𝑶𝑷

𝑰
∙ 𝒀𝑷𝑶 + 𝑭𝑺𝑪(13)

where 𝐶𝐶 is the building cost given by (14), 𝐸𝑂𝑆 is the factor that determines the economy of scale given by

(15), 𝑌𝑂𝑃 is the annual operation cost given by (16), 𝐼 are the interests given by (17), 𝑌𝑃𝑂 is the power

supplied annually given by (18), and finally 𝐹𝑆𝐶 is the coefficient of farm size given by (19).

𝑪𝑪 = (𝒄𝒕 ∙ 𝒏) + (𝒄𝒔 ∙ 𝒇𝒍𝒐𝒐𝒓 (
𝒏

𝒎
))(14)

𝑬𝑶𝑺 =
𝟐

𝟑
+ (

𝟏

𝟑
∙ 𝒆−𝟎.𝟎𝟎𝟏𝟕𝟒∙𝒏𝟐

) (15)

𝒀𝑶𝑷 = 𝑪𝑶𝑴 ∙ 𝒏 (16)

𝑰 =
(𝟏−(𝟏+𝒓)−𝒚)

𝒓
 (17)

𝒀𝑷𝑶 =
𝟏

𝟖𝟕𝟔𝟎∙𝑷
 (18)

𝑭𝑺𝑪 =
𝟎.𝟏

𝒏
 (19)

where

 𝑐𝑡 = 𝑈𝑆𝐷 750,000 is the cost of the turbine.

 𝑐𝑠 = 𝑈𝑆𝐷 8,000,000 is the cost of the substation.

 𝑚 = 30 are turbines per substation.

 𝑟 = 0.03 is the interest rate.

 𝑦 = 20 is the lifetime of the farm in years.

 𝐶𝑂𝑀 = 20,000 is the annual operation of the turbine.

 𝑛 is the number of turbines.

 𝑃 is the power supplied by the wind farm.

The aforementioned parameters are those used in the 2015 contest [24]. This contest aimed to reduce

generation costs. The optimization decision variables refer to the position and the number of wind turbines

to be installed. Additionally, it is considered that there may be obstacles on the terrain, making the work area

in a discontinuous area.

The results obtained by the algorithms worked in this research were compared with the Genetic Algorithm

used in the contest. Table 5 shows the results:

Table 5. Results of Competition
f ALO BALO GA BBBO-MM

Ave 16.1542 12.3989 12.43737 12.39472
Std 0.0115 0.0051 0.0066 0.03428

These results show how new algorithms have performed better than others heuristic optimizations worked.

VII. CONCLUSIONS

In this article, two significant modifications to BBO and ALO algorithms have been made. On the one

hand, a binary modification to both algorithms was made, thus allowing for a better approach to the optimal

points of functions. On the other hand, a random change to the migration model of BBO algorithm was made.

These two algorithms have been put to the test with 15 functions and compared with other 3 algorithms of

great importance such as BPSOGSA, GA, and BBA. After being modified, they have proved that better

results can be obtained and therefore perform a more realistic approach to natural behaviors.

In the case of the first algorithm, when modeling new migration models and adding randomness on them,

we can expand the way how the algorithm finds optimal points of functions within the search space without

sacrificing computation times.

In the case of binary modification to both algorithms, this allows finding, accurately, the optimal points

of functions. This change is made considering that, by continuously varying the search within the space, this

can "skip" optimal points; by contrast, by conducting the search within a discretized space in a binary fashion,

the search is carried out accurately because it does not leave "holes" along its journey through the search

space.

For future studies, it is recommended to apply both BBBO-AMM and BALO algorithms to real problems

in order to determine the efficiency of these algorithms when solving real-world problems. It may be also

interesting to study new migration models in BBBO-AMM and add different search models to BALO.

VIII. REFERENCES

[1] M. Dorigo, V. Maniezzo and A. Colorni, «The Ant System: Optimization by a Colony of Cooperating Agents,» IEEE

Transactions Systems, Man, and Cybernetics B, vol. 26, nº 1, pp. 26:29-41, 1996.

[2] A. Kaveh and N. Farhoudi, «A new optimization method: Dolphin echolocation,» Advances in Engineering Software, vol.

59, pp. 53-70, May 2016.

[3] S. Mirjalili, and A. Lewis, «Grey Wolf Optimizer,» Advances in Engineering Software, vol. 69, pp. 46-61, March 2014.

[4] E. Rashedi, H. Nezamabadi-pour and S. Saryazdi, «GSA: A Gravitational Search Algorithm,» Information Sciences, vol.

179, nº 13, pp. 2232-2248, June 2009.

[5] A. Kaveh and M. Khayatazad, «A new meta-heuristic method: Ray Optimization,» Computer & Structures, vol. 1, pp. 283-

294, Dec 2012.

[6] A. Hernández Sauta, E. Torres Iglesias, M. A. Rodríguez Vidal and P. Eguía Lopez, «Survey and Crossed Comparison of

Types, Optimal Location Techniques, and Power System Applications of FACTS,» PowerTech (POWERTECH),

Grenoble, Grenoble 2013, 2018 IEEE.

[7] D. Wolpert and W. Macready, «No Free Lunch Theorems for Optimization,» IEEE Transactions on Evolutionary

Computation, nº 1, p. 67, 1997.

[8] D. Simon, «Biogeography-Based Optimization,» IEEE Transactions on Evolutionary Computation 12, pp. 702-713, 2008.

[9] H. Ma, «An analysis of the equilibrium of migration models for biogeography-based optimization,» Information Sciences

180, pp. 3444-3465, 2010.

[10] S. Mirjalili, «The Ant Lion Optimizer,» Advances in Engineering Software, vol. 83, pp. 80-98, March 2015.

[11] Z. W. Geem, J. H. Kim and G. V. Loganathan, «A New Heuristic Optimization Algorithm: Harmony Search,» Simulation:

Transactions of The Society for Modeling and Simulation International, vol. 76, nº 2, pp. 60-68, Feb 2001.

[12] S. Mirjalili and S. Z. Mohd Hashim, «BMOA: Binary Magnetic Optimization Algorithm,» de 3rd International

Conference on Machine Learning and Computing (ICMLC 2011), Singapore., 2011.

[13] R. H. MacArthur and E. O. Wilson, The Theory of Island Biogeography., Princeton, New Jersey: Princeton University

Press, 1967.

[14] I. Scharf and O. Ovadia, «Factors Influencing Site Abandonment and Site Selection in a Sit-and-Wait Predator: A Review

of Pit-Building Antlion Larvae,» Journal of Insect Behavior, vol. 19, nº 2, pp. 197-218, March 2016.

[15] J. Goodenough, B. McGuire y E. Jakob, Perspectives On Animal Behavior, John Wiley & Sons, 2009.

[16] S. Mirjalili, S. M. Mirjalili and X.-S. Yang, «Binary Bat Algorithm,» Journal: Neural Computing and Applications, vol.

25, nº 3, pp. 663-681, Sept. 2014.

[17] T. Back, Evolutionary Algorithms in Theory and Practice, Oxford, U.K.: Oxford Univ. Press, 2016.

[18] M. Iqbal, B. Xue, H. Al-Sahaf and M. Zhang, "Cross-Domain Reuse of Extracted Knowledge in Genetic Programming for

Image Classification," in IEEE Transactions on Evolutionary Computation, vol. 21, no. 4, pp. 569-587, Aug. 2017.

[19] Z. Cai and Y. Wang, «A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization,» IEEE

Transactions. Evolutionary Computation., vol. 10, nº 6, pp. 658-675, Dec. 2016.

[20] X.-S. Yang, Engineering Optimization: An Introduction with Metaheuristic Applications, London: Wiley, Jul 2010.

[21] M. Molga and C. Smutnicki, «Test Functions for optimization needs.,» 2005. [On line]. Available:

http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf.

[22] F. Wei, S. Li and J. Xue, "A New Local Searching Strategy for Global Optimization with a Large Number of Local

Optimum," 2017 13th International Conference on Computational Intelligence and Security (CIS), Hong Kong, 2017, pp.

229-232.

[23] S. Mirjalili, G.-G. Wang y L. d. S. Coelho, «Binary Optimization Using Hybrid Particle Swarm Optimization and

Gravitational Search Algorithm,» Neural Computing and Applications, vol. 25, nº 6, pp. 1423-1435, Nov. 2015.

[24] «Wind Farm Layout Optimization Competition.,» 2015. [on line]. Available: https://www.irit.fr/wind-

competition/2015/#home.

