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Facultad de Ciencias Básicas
c©Programa de Matemáticas
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Abstract

This article contains a detailed description of the generalization of sequences of orthogonal wavelets of rank 2 made by
Daubechies for the case of M wavelet matrices made by Heller, in where we construct several examples that describe in
a friendly way the theory developed by Daubechies and Heller.
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Resumen

Este artı́culo contiene una descripción detallada de la generalización de sucesiones de ondı́culas ortogonales de rango 2
hecha por Daubechies para el caso de matrices de ondı́culas de rango M hecha por Heller, en donde construimos varios
ejemplos que describe de manera amigable la teorı́a desarrollada por Daubechies y Heller.
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1. Introduction

The waves have had a history marked by many independent discoveries and rediscoveries. They have
been introduced in 1984 by Morlet and Grossmann where they introduced for the first time the term in the
mathematical language. Ives Meyer in 1985, discovered the first soft orthogonal waves and in 1988 Ingrid
Daubechies He constructed the first orthogonal waves with compact support, which became a practical tool.

There is an intrinsic relationship between the ideas of the theory of ondiculas and those existing in
algorithms to process signals and images; In a general way, the applications of the ondiculas to the systems
of communication are increasingly more relevant, this because it is a mathematical instrument that adapts
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very well to the classical methods of the analysis to process signals. The objective of the analysis of the
signal is to extract the desired information and that is within the object of study. For example, Fourier
analysis uses an infinite number of sinusoidal and cosinusoidal waves to interpret sounds, images and other
applications. However, the analysis according to the wavelets uses a single fundamental element, which is
precisely the wavelet chosen according to the convenience of the problem being studied. The expectation of
wavelet theory is its optimization in data compression, which is due to its ability to condense in good form
the information coming from the signals. For example, the images are decomposed at the level of details;
Each part of the image contains information about the other parts.

The algorithms developed by Burt and Adelson in 1983 decompose a signal into its trend and its details
using a pair of filters that capture different properties of the signal (see [BA]). In 1987 Y. Meyer and S. Mallat
described the algorithms mentioned above in terms of a structure called Multiresolution Analysis where the
decomposition into trend and details was manifested in the invariance due to dyadic expansions of the new
structure (see [Ma]).

Wavelet theory can be defined as an alternative to classical Fourier theory and aims to construct an
orthonormal basis of L2(R) from a single function by dilatations and translations.

In a first work see [RV] we collected information and developed a generalization for the case of M-
wavelets with M>1, from the construction of 2-wavelets from a multiresolution analysis made by Hernández
and Weiss in [HW]. In this work we will construct M-wavelet matrices with N vanishing moments that give
rise to a scale function that will allow us constructing M-wavelets that have all compact support, where we
define the Fourier transform of f as

f̂ (ω) =

∫
R

f (x)e−ixωdx,

so we will write the Plancherel theorem

‖ f ‖22 =
1

2π
‖ f̂ ‖2.

From the computational point of view it is advisable to use filters that are trigonometric polynomials.
These give rise to scale functions and M-wavelets of compact support.

In section 2 we will construct M-wavelets with N vanishing moments using the results of [RV], in section
3 we will construct functions of such scale that from them we will develop in section 5 the M-wavelets, with a
method developed by P.N. Heller (see [He]), and finally in sections 5 and 6 we will develop several examples
of scaling sequence and M-wavelet matrices.

2. M-wavelets with N vanishing moments

In [RV] it was shown that to construct M-wavelets {ψ1, ψ2, ..., ψM−1} from a M-AMR with scale function
ϕ it is enough to find the coefficients {a0,k : k ∈ Z} of the low-pass filter m0 and the coefficients {as,k : k ∈
Z, s = 1, 2, ...,M − 1} of high-pass filters m1,m2, ...,mM−1. These coefficients must satisfy∑

k∈Z

as,kas′,k+Ml = Mδs,s′δ0,l l ∈ Z, s, s′ ∈ {0, 1, ...,M − 1} (2.1)

Instead of ϕ̂(Mω) = m0(eiω)ϕ̂(ω) it follows that m0(eiω)|ω=0 = 1 and this implies that
∑

k∈Z a0,k = M.
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When M-wavelets are construct {ψ1, ψ2, ..., ψM−1} continuous and with support compact we should have
to

∫
R ψ

(s)(x)dx = 0 , s = 1, 2, ...,M − 1 (see Theorem 4.1 in [RV]). Therefore of ψ̂(s)(0) = 0 and of ψ̂s(Mω) =

ms(eiω)ϕ̂(ω) it follows that
∑

k∈Z as,k = 0 , s = 1, 2, ...,M − 1. Therefore, we will assume that∑
k∈Z

as,k = Mδs,0, s = 0, 1, 2, ...,M − 1 (2.2)

Definition 2.1. We will say that the matrix

A =
(
as,k

)M−1

s=0 k∈Z

of order M ×∞ is a M-wavelet matrix whether satisfy (2.1) and (2.2).

Our goal is to construct M-wavelet matrix that generate M-wavelets {ψ1, ψ2, ..., ψM−1} with a number N
of fixed vanishing moments. The condition (2.2) it tells us that each ψs has its first vanishing moment. If we
want

∫
R xψs(x)dx = 0 (N=1) for each s = 1, ...,M − 1 it must have to

dψ̂(s)

dω
(0) = (−i)

∫
R

xψs(x)dx = 0; (2.3)

as ψ̂(s)(Mω) = ms(eiω)ϕ̂(ω) taking derivatives and using ms(0) = 0 it is deduced

dψ̂(s)

dω
(0) =

dms(eiω)
dω


ω=0

.ϕ̂(0) s = 1, 2, ..,M − 1. (2.4)

Of (2.3) and (2.4) it is deduced (using ϕ̂(0) = 1)

0 =
dms(eiω)

dω


ω=0

=
1
M

∑
k∈Z

(−ik)as,k s = 1, 2, ...,M − 1

Proceeding by induction, we conclude that the M-wavelets {ψ1, ψ2, ..., ψM−1} have the N first vanishing mo-
ments when ∑

k∈Z

knas,k = 0 n = 0, 1, ...,N − 1 , s = 1, 2, ...,M − 1 (2.5)

and this condition is equivalent to

dnms(eiω)
dωn


ω=0

= 0 n = 0, 1, ...,N − 1 , s = 1, 2, ...,M − 1 (2.6)

where ms(eiω) = 1
M

∑
k∈Z as,ke−iωk.

Therefore, the M-wavelet matrix A has N vanishing moments if it is true (2.5) or equivalently (2.6).

Theorem 2.1. Let A = (as,k)M−1
s=0 ,k∈Z be the M-wavelet matrix. The following conditions are equivalent:

(i) The matrix A has N vanishing moments
(ii) The low-pass filter m0(eiω) has a zero of order N in each of the M th roots of unity ζm = e

2πim
M ,m =

1, 2, ...,M − 1.
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Proof. (ii)⇒(i) We have to m(n)
0 (ζm) = 0,for m = 1, 2, ...,M − 1 and n = 0, 1, ...,N − 1. We want to try (2.6).

By (3.1) we have that
M−1∑
m=0

m0(ζmeiω)ms(ζmeiω) = 0 , s = 1, 2, ...,M − 1. (2.7)

Using the hypothesis for n = 0 it follows m0(eiω)|ω=0ms(eiω)|ω=0 = 0. Since m0(eiω)|ω=0 = 1 it follows that

ms(eiω)|ω=0 = 0 (2.8)

For n = 1, we derive (2.7) getting

M−1∑
m=0

[dm0(ζmeiω)
dω

ms(ζmeiω) + m0(ζmeiω)
dms(ζmeiω)

dω

]
= 0

from which we deduce that

m(1)
s (eiω)|ω=0 = 0

Suppose that our thesis is fulfilled until the derivative n− 1. Let us then calculate the nth derivative using
the rule of Leibniz that comes given by:

( f (x)g(x))(n) =

n∑
k=0

(
n
k

)
f (n−k)(x)g(k)(x)

So we have that for s , 0

0 =

( M−1∑
m=0

m0(ζmeiω)ms(ζmeiω)
)(n)

=

M−1∑
n=0

(
m0(ζmeiω)ms(ζmeiω)

)(n)

=

M−1∑
m=0

n∑
k=0

(
n
k

)
m(n−k)

0 (ζmeiω)m(k)
s (ζmeiω).

doing ω = 0, using the hypothesis of induction and (ii) we have

0 =

M−1∑
m=0

m0(ζm)m(n)
s (ζm)

= m0(1)m(n)
s (1).

Since m0(1) = 1 it follows that m(n)
s (eiω)|ω=0 = 0 with s = 1, 2, ...,M − 1.

(i)⇒ (ii) We know that

M−1∑
s=0

|ms(eiω)|2 = 1 and
M−1∑
m=0

|m0(ei(ω+ 2πm
M ))|2 = 1, (2.9)

doing ω = 0 we have to
M−1∑
s=0

|ms(1)|2 = 1 and
M−1∑
m=0

|m0(ζm)|2 = 1. (2.10)
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From (2.10) we deduce

1 = |m0(1)|2 +

M−1∑
m=1

|m0(ζm)|2.

Therefore
m0(ζm) = 0 for m = 1, ...,M − 1. (2.11)

what proves the case n = 0 of our thesis.
From (2.10) we deduce that

1 =

M−1∑
s=0

|ms(1)|2 = |m0(1)| +
M−1∑
s=1

|ms(1)|2,

thus

M−1∑
s=1

|ms(1)|2 = 0

and therefore
ms(1) = 0 for s = 1, ...,M − 1. (2.12)

From (2.11) and (2.12) we deduce that

M(1) =


1 0 . . . 0
0 m1(ζ) . . . m1(ζM−1)
...

...
. . .

...
0 mM−1(ζ) . . . mM−1(ζM−1)

 .
Since M(1) is an orthogonal matrix, it follows that the vectors

(m1(ζ), ...,m1(ζM−1)) ∈ RM−1, ..., (mM−1(ζ), ...,mM−1(ζM−1)) ∈ RM−1

are linearly independent and therefore generate RM−1. For (2.11) we have to m0(ζm) = 0 for m =

1, ...,M − 1; lack to prove that

m(n)
0 (ζm) = 0 for m = 1, ...,M − 1, n = 1, ...,N − 1.

By induction, suppose that m(k)
0 (ζm) = 0,m = 1, ...,M − 1 and 0 ≤ k < n. Then

0 =

M−1∑
m=0

m0(ζmeiω)ms(ζmeiω) when s = 1, ...,M − 1.

The n-th derivative of this expression and applying the rule of Leibniz gives us:

0 =

M−1∑
m=0

{ n∑
j=0

(
n
j

)
m( j)

0 (ζmeiω)m(n− j)
s (ζmeiω)

}
.
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Making ω = 0, using the hypothesis of induction and (i) in (2.11) we have to

0 =

M−1∑
m=0

{ n∑
j=0

(
n
j

)
m( j)

0 (ζm)m(n− j)
s (ζm)

}
=

n∑
j=0

(
n
j

)
m( j)

0 (1)m(n− j)
s (1) +

M−1∑
m=1

m(n)
0 (ζm)ms(ζm) (by induction)

=

M−1∑
m=1

m(n)
0 (ζm)ms(ζm) (by (2.11)).

If we do v = (m(n)
0 (ζ), ...,m(n)

0 (ζM−1)) we have to

< v, vs >= 0 ∀s = 1, ...,M − 1.

Consequently v = 0 since {vs}
M−1
s=1 is a base for RM−1. So,

m(n)
0 (ζ) = 0, ...,m(n)

0 (ζM−1) = 0

3. Construction of scaling sequence

As we mentioned earlier, our goal is to construct an M-wavelet matrix A with N vanishing moments and
that give rise to a function of scale ϕ and to M-wavelets {ψ1, ..., ψM−1} that have all compact support.

We will start constructing a succession of finite scale {a0,k : 0 ≤ k ≤ k} ⊂ R what should satisfy

k∑
k=0

a0,ka0,k+Ml = Mδ0,l l ∈ Z (3.1)

k∑
k=0

a0,k = M (3.2)

and

m(n)
0 (ζm) = 0 , n = 0, 1, ...,N − 1, m = 1, 2, ...,M − 1 (3.3)

where ζm = ei 2πm
M are the M-th roots of the unit. The condition (3.1) is followed by (2.1), (3.2) is followed by

(2.2), and (3.3) is the condition (ii) of Theorem 2.1.
Since the scale succession is finite, m0(eiω) is a trigonometric polynomial (of degree k). ζm is a zero of

order N of m0(eiω),m = 1, 2, ...,M − 1 (see (3.3)), thus we have that

m0(eiω) =
( M−1∏

m=1

(eiω − ζm)
M

)N
Q(eiω), (3.4)
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where Q(eiω) is a trigonometric polynomial. Since ζm, m = 1, 2, ...,M are the M-th roots of the unit other
than 1, we have that

M−1∏
m=1

(eiω − ζm) =
eiMω − 1
eiω − 1

. (3.5)

We will construct P(eiω) = |m0(eiω)|2, to later obtain m0(ei omega) using Fejer’s factorization (Lemma 3.16 of
chapter 2 of [HW]). So

P(eiω) = [H(eiω)]NRN(eiω)

where

H(eiω) =
 eiMω − 1

M(eiω − 1)

2
and RN(eiω) = |Q(eiω)|2. (3.6)

The orthogonality conditions (3.1), (3.2) and (3.3) are equivalent to

P(eiω) + P(ei(ω+ 2π
M )) + ... + P(ei(ω+

2π(M−1)
M )) = 1 (3.7)

and P has a zero of order 2N in ω where ω = 2πm
M with m = 1, 2, ...,M − 1, thus

P(eiω) = 1 + O(|ω|2N), in ω ≈ 0; (3.8)

as the coefficients a0,k are real, P(eiω) and H(eiω) are pairs. Therefore, RN(eiω) is also par. Let’s try to find a
polynomial of cosines of the shape

RN(x) =

N−1∑
n=0

ρncosnω.

Doing x = cosω we can write your Taylor expansion around x = 1:

RN(x) =

N−1∑
n=0

rn(1 − x)n with rn =
1
n!

R(n)
N (x)|x=1.

On the other hand,

RN(x) = P(x)[H(x)]−N .

Leibniz’s rule gives us

R(n)
N (x)|x=1 =

n∑
k=0

(
n
k

)[
(

d
dx

)kP(x)
]

x=1

[
(

d
dx

)n−k[H(x)]−N
]

x=1
. (3.9)

Since P − 1 has an order zero of 2N in x = 1 by (3.8), the expression (3.9) is simplified to:

R(n)
N (x)|x=1 =

[
(

d
dx

)n[H(x)]−N
]

x=1
.

Then

RN(x) =

N−1∑
n=0

[ 1
n!

(
d
dx

)n[H(x)]−N
]

x=1
(x − 1)n.
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In other words, RN matches the first N terms of the Taylor expansion of H−N around x = 1, and this we can
calculate from the definition of H given in (3.6). We have

H(eiω) =
1

M2

M−1∏
m=1

|eiω − ζm|2.

If M is even we make M1 = M
2 . As ζM1 = e

2πiM1
M = eπi = −1 and ζM1+1, ..., ζ2M1−1 are the conjugates of

ζM1−1, ..., ζ respectively, we have that

1
M2

M−1∏
m=1

|eiω − ζm|2 =
1

M2 |e
iω + 1|2

M1−1∏
m=1

|(eiω − ζm)(eiω − ζ̄m)|2

=
1

M2 |e
iω + 1|2

M1−1∏
m=1

|(1 − e−iωe
2πim

M )(1 − e−iωe
−2πim

M )|2

=
1

M2 |e
iω
2 (e

iω
2 + e−

iω
2 )|2

M1−1∏
m=1

|(1 − ei(ω+ 2πm
M ))(1 − ei(ω− 2πm

M ))|2

=
1

M2 4cos2ω

2

M1−1∏
m=1

|eiω(e−iω − ei 2πm
M − e−i 2πm

M + eiω)|2

=
2

M2 (1 + cosω)
M1−1∏
m=1

2cosω − 2cos
2πm
M

2
. (3.10)

Therefore

H(cosω) =
2

M2 (1 + cosω)
M1−1∏
m=1

4
(
cosω − cos

2πm
M

)2

=
2M2−1

M2 (1 + cosω)
M1−1∏
m=1

(cosω − cos
2πm
M

)2.

Doing x = cosω, we have that

H(x) =
2M−1

M2 (x + 1)
M1−1∏
m=1

(x − cos
2πm
M

)2 with M even. (3.11)

On the other hand, for M odd we make M1 = M−1
2 and we have

1
M2

M−1∏
m=1

|eiω − ζm|2 =
1

M2

2M1∏
m=1

|eiω − ζm|2

=
1

M2

M1∏
m=1

|(eiω − ζm)(eiω − ζ̄m)|2
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By an analogous procedure to the previous one, it is deduced

1
M2

M−1∏
m=1

|eiω − ζm|2 =
1

M2

M1∏
m=1

(1 − ei(ω+ 2πm
M ))(1 − ei(ω− 2πm

M ))
2

=
1

M2

M1∏
m=1

4
(
cosω − cos

2πm
M

)2
.

And doing x = cosω,

H(x) =
2M−1

M2

M1∏
m=1

(
x − cos

2πm
M

)2
with M odd. (3.12)

Consider the expansion in series of powers of [H(x)]−N .
For

f (x) =
(
x − cos

2πm
M

)−2N
,

his Taylor series around x = 1 is

(
x − cos

2πm
M

)−2N
=

∞∑
n=0

(
2N + n − 1

2N − 1

)
(−1)n

(
1 − cos

2πm
M

)−2N−n
(x − 1)n. (3.13)

The Taylor series of (x + 1)−N around x = 1 is

(x + 1)−N =

∞∑
n=0

(
N + n − 1

N − 1

)
(−1)n2−N−n(x − 1)n. (3.14)

We use (3.11) together with (3.13) and (3.14) when M is even and we obtain that

[H(x)]−N =
[ M2

2M−1

]N
∞∑

n=0

(
N + n − 1

N − 1

)
(−1)n2−N−n(x − 1)n ×

×

M1−1∏
m=1

∞∑
n=0

(
2N + n − 1

2N − 1

)
(−1)n

(
1 − cos

2πm
M

)−2N−n
(x − 1)n. (3.15)

Then

[H(x)]−N =

[
M2

2M−1

]N ∞∑
kM1 =0

(
N + kM1 − 1

N − 1

)
(1 − cosπ)−N−kM1 (1 − x)kM1 ×

×

∞∑
n=0

∑
k1+k2+...+kM1−1=n

M1−1∏
m=1

(
2N + km − 1

2N − 1

)(
1 − cos

2πm
M

)−2N−km
(1 − x)n

=

[
M2

2M−1

]N ∞∑
n=0

∑
k1+k2+...+kM1 =n

{ M1−1∏
m=1

(
2N + km − 1

2N − 1

)(
1 − cos

2πm
M

)−2N−km

}
×

×

(
N + kM1 − 1

N − 1

)
2−N−kM1 (1 − x)n.
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Therefore for M even we have

rn =

[
M2

2M−1

]N ∑
k1+k2+...+kM1 =n

{ M1−1∏
m=1

(
2N + km − 1

2N − 1

)(
1 − cos

2πm
M

)−2N−km

}
×

×

(
N + kM1 − 1

N − 1

)
2−N−kM1

or

rn =

[
M2

2M−1

]N

2−N
[ M1−1∏

m=1

(
1 − cos

2πm
M

)−2N
]

∑
k1+k2+...+kM1 =n

{ M1−1∏
m=1

(
2N + km − 1

2N − 1

)(
1 − cos

2πm
M

)−km

}
×

×

(
N + kM1 − 1

N − 1

)
2−kM1 .

In (3.10) doing ω = 0 we have that

1
M2

M−1∏
m=1

|1 − ζm|2 =
2M−1

M2 2
M1−1∏
m=1

(1 − cos
2πm
M

)2.

Thus

M1−1∏
m=1

(
1 − cos

2πm
M

)−2N
=

[
1

2M−12

]−N[ M−1∏
m=1

|1 − ζm|2
]−N

.

As

M−1∏
m=1

(eiω − ζm) = 1 + eiω + ... + ei(M−1)ω

for ω = 0 you have to

M−1∏
m=1

(1 − ζm) = 1 + 1 + ... + 1 = M.

Therefore;

M1−1∏
m=1

(
1 − cos

2πm
M

)−2N
=

1
2−MN M−2N .
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Substituting in rn we have that

rn =

[
M2

2M−1

]N

2−N M−2N

2−MN

∑
k1+k2+...+kM1 =n

{ M1−1∏
m=1

(
2N + km − 1

2N − 1

)(
1 − cos

2πm
M

)−km

}

×

(
N + kM1 − 1

N − 1

)
2−kM1

=
M2N

2MN2−N 2−N M−2N

2−MN

∑
k1+k2+...+kM1 =n

{ M1−1∏
m=1

(
2N + km − 1

2N − 1

)(
1 − cos

2πm
M

)−km

}

×

(
N + kM1 − 1

N − 1

)
2−kM1 .

Consequently,

rn =
∑

k1+k2+...+kM1 =n

{ M1−1∏
m=1

(
2N + km − 1

2N − 1

)(
1 − cos

2πm
M

)−km

}

×

(
N + kM1 − 1

N − 1

)
2−kM1 with M even. (3.16)

For M odd by (3.12) we have

H(x) =

(
2M−1

M2

) M1∏
m=1

(
x − cos

2πm
M

)2
.

Thus

[H(x)]−N =

[
M2

2M−1

]N M1∏
m=1

(
x − cos

2πm
M

)−2N
with M odd. (3.17)

Then for (3.13)

[H(x)]−N =

[
M2

2M−1

]N M1∏
m=1

∞∑
n=0

(
2N + n − 1

2N − 1

)
(−1)n(1 − cos

2πm
M

)−2N−n(x − 1)n.

Then analogously,

[H(x)]−N =

[
M2

2M−1

]N

×

×
∑
n=0

∑
k1+k2+...+kM1 =n

{ M1∏
m=1

(
2N + km − 1

2N − 1

)(
1 − cos

2πm
M

)−2N−km

}
(1 − x)n.
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Therefore for M odd we find

rn =

[
M2

2M−1

]N ∑
k1+k2+...+kM1 =n

{ M1∏
m=1

(
2N + km − 1

2N − 1

)(
1 − cos

2πm
M

)−2N−km

}

=

[
M2

2M−1

]N M1∏
m=1

(
1 − cos

2πm
M

)−2N
×

×
∑

k1+k2+...+kM1 =n

{ M1∏
m=1

(
2N + km − 1

2N − 1

)(
1 − cos

2πm
M

)−km

}
.

In (3.12) doing ω = 0 we have that

M1∏
m=1

(
1 − cos

2πm
M

)−2N
=

[
1

2M−1

]−N[ M−1∏
m=1

|1 − ζm|2
]−N

=
1

2−MN2N M−2N

=

[
M2

2M−1

]−N

.

In consecuense

rn =
∑

k1+k2+...+kM1 =n

{ M1∏
m=1

(
2N + km − 1

2N − 1

)(
1 − cos

2πm
M

)−km

}
with M odd. (3.18)

So we have that RN is the finite trigonometic polynomial

RN(eiω) =

N−1∑
n=0

rn(1 − cosω)n (3.19)

With rn given by (3.16) for M even and (3.18) for M odd.
Note that rn is positive and cosω < 1 for all ω , 0, therefore RN is a trigonometric polynomial positive.

Lemma 3.1. The solution P = HNRN , with RN given by (3.19) and (3.16) if M is even or (3.18) if M is odd
which satisfies (3.3), also satisfies the orthogonality condition (3.7).

Proof. Define

φ(eiω) = P(eiω) + P(ei(ω+ 2π
M )) + ... + P(ei(ω+

2π(M−1)
M )) − 1,

then φ + 1 is the periodization of P to the interval [0, 2π
M ].

Since φ is real, even, and periodic with period 2π
M , it must have the trigonometric polynomial expansion

φ(eiω) =

N−1∑
k=0

ck(eiMkω + e−iMkω) (3.20)
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By construction φ is a flat of order N in x = cosω at x = 1; this means that φ(x) can approximate in
a environment of 1 by a polynomial in (x − 1) of degree N, and the error of this approximation is of order
higher than (x − 1)N when x→ 1; in other words

φ(x) = (x − 1)N for x ≈ 1.

As P(eiω) = 1 + O(|ω|2N) in ω = 0, then φ(eiω) is of order |ω|2N when ω→ 0, thus

φ(eiω) = ω2N for ω ≈ 0,

and [(
d

dω

)n

φ(eiω)
]
ω=0

= 0, for n = 0, 1, ..., 2N − 1 . (3.21)

On the other hand, of (3.20) we have that(
d

dω

)n

φ(eiω) =

N−1∑
k=0

ck[(iMk)neiMkω + (−iMk)ne−iMkω].

However, [(
d

dω

)n

φ(eiω)
]
ω=0

=

N−1∑
k=0

ck[(iMk)n + (−iMk)n]

=

{
0 if n is odd
2(−M2)

n
2
∑N−1

k=0 ckkn if n is even, n ≤ 2N − 2 .
(3.22)

By matching (3.21) and (3.22) you get a system of Vandermonde of order N × N for the ck, with k =

0, 1, ...,N − 1: 

1 1 1 ... 1 1 1
0 1 4 ... k2 ... (N − 1)2

0 1 16 ... k4 ... (N − 1)4

0 1 ...
0 1 ...
0 1 ...
0 1 22N−2 ... k2N−2 ... (N − 1)2N−2





co

c1
c2
.
.
.

cN−1


=



0
0
0
.
.
.
0


Because it is a Vandermonde system, its associated matrix has a non-zero determinant, which implies that

is invertible and therefore this system has a solution only the trivial, that is, c0 = c1 = c2 = ... = cN−1 = 0. In
consequence φ(eiω) = 0 what it means

P(ei(ω)) + P(ei(ω+ 2π
M )) + ... + P(ei(ω+

2π(M−1)
M )) = 1.

With the Lemma 3.1, we have completed the proof of following theorem
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Theorem 3.1. A P solution, which is the module squared of the low-pass filter corresponding to an M-
wavelet with N vanishing moments, is given by

P(eiω) =

1 + e−iω + e−i2ω + ... + e−i(M−1)ω

M


2N

RN(eiω)

with RN given by (3.19) and (3.16) if M is even or (3.18) if M is odd.

The low-pass filter m0 will be a spectral factor of P of the form

m0(eikω) =

(
1 + e−iω + e−i2ω + ... + e−i(M−1)ω

M

)N

QN(eiω),

where the trigonometric polynomial QN is a spectral factor of RN . This is calculated using the Fejer-Riesz
method ([HW], page 99, section 2.5), finding

QN(eiω) =

N−1∑
n=0

cne−inω such that

RN(eiω) =

N−1∑
n=0

bncosnω

= QN(eiω)QN(eiω)

This factorization depends on the fact that RN(eiω) ≥ 0 for ω ∈ [0,2π], what that we have observed
previously.

4. Example of scaling sequence

Now we will use the methods developed previously for to construct scaling sequence of M-AMR that
produce M-wavelets with N vanishing moments.

Example 4.1: M=3 and N=2 (3-wavelets with 2 vanishing moments). In this case

P(eiω) =

1 + e−iω + e−i2ω

3


2N

RN(eiω)

= |e−iω|2N
eiω + e−iω + 1

3


2N

RN(eiω)

=

(
1 + 2cosω

3

)2N

RN(eiω).

To calculate RN we use

RN(eiω) =

N−1∑
n=0

rn(1 − cosω)n

64



Yenny Rangel / Matua Revista MATUA VOL: V (2018) pǵina: 65–78 65

with rn given by the formula (3.18) with M1 = 1 (since M = 3):

rn =

(
2N + n − 1

2N − 1

)(
1 − cos

2π
3

)−n

=

(
2N + n − 1

2N − 1

)(3
2

)−n
.

Therefore we have that

RN(eiω) =

N−1∑
n=0

(
2N + n − 1

2N − 1

)(2
3

)n
(1 − cosω)n

and

P(eiω) =

(
1 + 2cosω

3

)2N N−1∑
n=0

(
2N + n − 1

2N − 1

)(2
3

)n
(1 − cosω)n for M = 3 .

Making N=2,

R2(eiω) =

1∑
n=0

(
4 + n − 1

4 − 1

)(2
3

)n
(1 − cosω)n

=
11
3
−

8
3

cosω .

We want to find Q2(eiω) = a + b−iω such that

|Q2(eiω)|2 = R2(eiω);

then (a + biω)(a + b−iω) = 11
3 −

8
3 cosω if and only if

11
3
−

8
3

cosω = a2 + abe−iω + abeiω + b2

= a2 + b2 + 2abcosω .

Therefore we have the following system: {
a2 + b2 = 11

3
2ab = −8

3 .

Thus

a =
−4
3b

and 9b4 − 33b2 + 16 = 0.

Resolving this equation of the second degree we have:

b = ±

√
11 ±

√
57

6
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Therefore,

when b =
1
2

+

√
57
6

, a =
1
2
−

√
57
6

in the same way,

when b =
1
2
−

√
57
6

, a =
1
2

+

√
57
6

Thus

Q2(eiω) =
1
2

{
1 ±

√
57
3

+

(
1 ∓

√
57
3

)
e−iω

}
Now we can find the succession of scale. We know that P = HNRN , which with N = 2 produces

P = H2R2 = H2|Q2|
2.

Therefore, for M = 3 and N = 2,

P(eiω) =

1 + e−iω + e−i2ω

3


4

R2(eiω)

=


(

1 + e−iω + e−i2ω

3

)2
2

|Q2(eiω)|2

=


(

1 + e−iω + e−i2ω

3

)2
2

|a + be−iω|2

=

(
1 + e−iω + e−i2ω

3

)2(1 + e−iω + e−i2ω

3

)2

(a + be−iω)(a + be−iω)

As P(eiω) = m0(eiω)m0(eiω) we have that

m0(eiω) =
(1 + e−iω + e−i2ω

3

)2
(a + be−iω)

=
1
3

[a
3

+
(2a + b)

3
e−iω +

(3a + 2b)
3

e−i2ω +
(2a + 3b)

3
e−i3ω +

(a + 2b)
3

e−i4ω +
b
3

e−i5ω
]
.

As m0(eiω) = 1
3
∑5

k=0 a0,ke−ikω the coefficients a0,k are given by

a0,0 =
a
3

=
1
3

(
1
2
±

√
57
6

)
=

1
6

[
3 ±
√

57
3

]
=

[
3 ±
√

57
18

]

a0,1 =
(2a + b)

3
=

1
3

[
2
[
3 ±
√

57
6

]
+

[
3 ∓
√

57
6

]]
=

9 ±
√

57
18
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Proceeding in this way, we obtain that the scaling sequence for M = 3 and N = 2 is given by:{
a0,k

}
=

{
3 ±
√

57
18

,
9 ±
√

57
18

,
15 ±

√
57

18
,

15 ∓
√

57
18

,
9 ∓
√

57
18

,
3 ∓
√

57
18

}
Example 4.2: M=4 and N=2 (4-wavelets with 2 vanishing moments). In this case

P(eiω) =

1 + e−iω + e−i2ω + e−3iω

4


2N

RN(eiω)

=
1

16N

[
(1 + e−iω + e−i2ω + e−i3ω)(1 + eiω + ei2ω + ei3ω)

]N
RN(eiω)

=
1

16N

[
4 + 6cosω + 4cos2ω + 2cos3ω

]N
RN(eiω)

=

[
1
2

(
1
2

+
3
4

cosω +
1
2

cos2ω +
1
4

cos3ω
)]N

RN(eiω).

Since
cos2ω =

1
2

+
cos2ω

2
and cos3ω =

3
4

cosω +
1
4

cos3ω

we have that

P(eiω) =

[
cos2ω + cos3ω

2

]N

RN(eiω).

Now let’s find an explicit form of RN(eiω). Doing M = 4 (M1 = 2) in (3.16)

rn =
∑

k1+k2=n

(
2N + k1 − 1

2N − 1

)(
1 − cos

2π
4

)−k1
×

(
N + k2 − 1

N − 1

)
2−k2

=
∑

k2=n−k1

(
2N + k1 − 1

2N − 1

)(
N + n − k1 − 1

N − 1

)
2−n+k1

=

n∑
k=0

(
2N + k − 1

2N − 1

)(
N + n − k − 1

N − 1

)
2k−n.

Then by (3.19)

RN(eiω) =

N−1∑
n=0

n∑
k=0

(
2N + k − 1

2N − 1

)(
N + n − k − 1

N − 1

)
2k−n(1 − cosω)n,

thus

P(eiω) =

[
cos2ω + cos3ω

2

]N

×

N−1∑
n=0

n∑
k=0

(
2N + k − 1

2N − 1

)(
N + n − k − 1

N − 1

)
2k−n(1 − cosω)n.

Doing N=2 we have that,

R2(eiω) =

N−1∑
n=0

n∑
k=0

(
4 + k − 1

4 − 1

)(
2 + n − k − 1

2 − 1

)
2k−n(1 − cosω)n

= 1 + (1 − cosω) + 4(1 − cosω)
= 6 − 5cosω.
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We want to find Q2(eiω) = a + b−iω such that

|Q2(eiω)|2 = R2(eiω).

As (a + biω)(a + b−iω) = 6 − 5cosω

6 − 5cosω = a2 + abe−iω + abeiω + b2

= a2 + b2 + 2abcosω .

Therefore we have the following system {
a2 + b2 = 6
2ab = −5 ,

Thus

a =
−5
2b

and 4b4 − 24b2 + 25 = 0 .

Resolving this equation of the second degree we have

b = ±

√
6 ±
√

11
2

Therefore;

when b =
1
2

+

√
11
2

, a =
1
2
−

√
11
2

in the same way

when b =
1
2
−

√
11
2

, a =
1
2

+

√
11
2

.

Thus

Q2(eiω) =
1
2

{
1 ±
√

11 +
(
1 ∓
√

11
)
e−iω

}
.

Now we can find the scaling sequence. We know that P = H2R2 = H2|Q2|
2, thus

P(eiω) =


(

1 + e−iω + e−i2ω + e−i3ω

4

)2
2

|a + beiω|2

=

(
1 + e−iω + e−i2ω + e−i3ω

4

)2(1 + eiω + ei2ω + ei3ω

4

)2

(a + be−iω)(a + be−iω).

As P(eiω) = m0(eiω)m0(eiω)

m0(eiω) =
(1 + e−iω + e−i2ω + e−i3ω

4

)2
(a + beiω)

=
1
16

[
1 + 2e−iω + 3e−i2ω + 4e−i3ω + 3e−i4ω + 2e−i5ω + e−i6ω

]
(a + be−iω)
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Thus m0(eiω) = 1
4
∑7

k=0 a0,ke−ikω and the coefficients a0,k are given by

a0,0 =
a
4

=
1
4

(
1
2
±

√
11
2

)
=

1
4

[
1 ±
√

11
2

]
=

[
1 ±
√

11
8

]

a0,1 =
(2a + b)

4
=

1
4

[
2
[
1 ±
√

11
2

]
+

[
1 ∓
√

11
2

]]
=

3 ±
√

11
8

.

Proceeding in this way, we obtain that the scaling sequence for M = 4 and N = 2 is given by

{
a0,k

}
=

{
1 ±
√

11
8

,
3 ±
√

11
8

,
5 ±
√

11
8

,
7 ±
√

11
8

,
7 ∓
√

11
8

,
5 ∓
√

11
8

,
3 ∓
√

11
8

,
1 ∓
√

11
8

}
.

5. Construction of M-wavelet matrices

The objective of this section is to construct a M-wavelet matrix from a succession of scale with N
vanishing moments. Remember that a scaling sequence satisfies (3.1) and ( 3.2) and an M-wavelet matrix
must satisfy (2.1) and (2.2).

Before starting the construction we will give some notation and definitions. The M-wavelet matrix A will
have M rows and K columns; it is convenient to add zeros to each row of A necessary for K = Mg for some
integer g. We will say that g is the overlap of the M-wavelet matrix A.

A matrix H = (hs,k)M−1 M−1
s=0 k=0 order M × M is said to be Haar type if

M−1∑
k=0

hs,khs′,k = Mδs,s′ s, s′ = 0, 1, ...,M − 1 (5.1)

and
h0,k = 1 para todo k = 0, 1, ...,M − 1 (5.2)

Therefore, H is a Haar type matrix if 1
√

M
H is orthogonal and the first row of H is all ones.

Examples of Haar type matrices are the matrices of the discrete cosines transforms (DCT) that have been
mentioned at the end of section 3 and the Hadamard’s matrix

H2 =

[
1 1
−1 1

]
, H4 =

[
H2 H2
−H2 H2

]
=


1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1


Given an M-wavelet matrix A of order M × Mg, g ∈ Z, we write A as g matrices each of order M × M,

separating each M columns from the form

A = (A0, A1...Ag−1)

Definition 5.1. The matrix H0 = A0 + A1 + ... + Ag−1 it’s called matrix characteristic of Haar associated
with A.

Lemma 5.1. If A is an M-wavelet matrix of order M×Mg, g ∈ Z, the matrix H0 given in the definition (5.1)
is a Haar type matrix.
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Proof. Let H0 = (hs,k)M−1 M−1
s=0 ,k=0 be and A = (as,k)M−1 Mg−1

s=0 ,k=0 ; then hs,k =
∑g−1

l=0 as,k+lM for s = 0, 1, ...,M − 1.
Thus

M−1∑
k=0

hs,khs′,k =

M−1∑
k=0

( g−1∑
l=0

as,k+lM

)( g−1∑
l′=0

as′,k+l′M

)
=

g−1∑
l′=0

{ M−1∑
k=0

g−1∑
l=0

as,k+lMas′,k+l′M

}
.

For l′ = l in (2.1)

M−1∑
k=0

g−1∑
l=0

as,k+lMas′,k+l′M =

Mg−1∑
k=0

as,kas′,k = Mδs,s′

For l′ , l in (2.1)

g−1∑
l′,l, l=0

{ M−1∑
k=0

g−1∑
l=0

as,k+lMas′,k+l′M

}
=

g−1∑
l′,l, l=0

Mg−1∑
k=0

as,kas′,k+(l′−l)M = 0

with this we have that

M−1∑
k=0

hs,khs′,k = Mδs,s′

Now we need to proof (5.2). We just proved that
∑M−1

k=0 h2
0,k = M. Accordingly, the vector v0 = (h0,1, ..., h0,M−1)

is in the sphere of center 0 and radius
√

M in RM . Also by (2.2),

M−1∑
k=0

h0,k =

M−1∑
k=0

( g−1∑
l=0

a0,k+lM

)
=

Mg−1∑
k=0

a0,k = M

which implies that v0 is also a point of the plane
∑M

i=1 xi = M en RM . Distance from the origin to this plane
is reached in (1, 1, ..., 1) ∈ RM and its value is

√
1 + 1 + ... + 1 =

√
M. Therefore, the sphere and plane

considered are tangent to each other and the point of tangency is (1, 1, ..., 1). This proof that h0,k = 1 for all
k = 0, 1, ...,M − 1.

Given an M-wavelet matrix A we call polyphase matrix associated with A to the matrix

H(z) = A0 + zA1 + ... + zg−1Ag−1.

Note that the elements of H(z) are

hs,r(z) =

g−1∑
l=0

as,r+lMzl, s, r = 0, 1, ...,M − 1,

and H(z)|z=1 = H0 (see definition 5.1).

Lemma 5.2. The condition (2.1) of the M-wavelet matrix is equivalent to

H(z)H∗(z) = MI i f |z| = 1.
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Proof.

MI = H(eiω)H∗(eiω) =

( g−1∑
n=0

Aneinω
)( g−1∑

p=0

At
pe−ipω

)

=

g−1∑
n=0

g−1∑
p=0

AnAt
pei(n−p)ω

=

g−1∑
l=1

( g−l−1∑
n=0

AnAt
n+l

)
e−ilω +

g−1∑
n=0

AnAt
n +

g−1∑
l=1

( g−1∑
n=l

AnAt
n−l

)
eilω.

This implies that
g−1∑
n=0

AnAt
n = MI (5.3)

g−l−1∑
n=0

AnAt
n+l = 0 ∀ l = 1, 2, ..., g − 1 (5.4)

g−1∑
n=l

AnAt
n−l = 0 ∀ l = 1, 2, ..., g − 1. (5.5)

Note that (5.4) is equivalent to (5.5). Also (5.3) is equivalent to

g−1∑
n=0

M−1∑
k=0

as,k+Mnas′,k+Mn =

Mg−1∑
k=0

as,kas′,k = Mδs,s′ ,

and on the other hand (5.4) is equivalent to

g−l−1∑
n=0

M−1∑
k=0

as,k+Mnas′,k+M(n−l) =

M(g−l)−1∑
k=0

as,kas′,k+Ml = 0 ∀ l = 1, 2, ..., g − 1

Theorem 5.1. Let a0 = (a0,0, ..., a0,gM−1) be a succession of scale with overlap g ∈ Z. Let H0 be an ma-
trix of type Haar. Then, there is an M-wavelet matrix A = (as,k)M−1 Mg−1

s=0, k=0 whose first row is a0 and whose
characteristic matrix of Haar is H0 such that its polyphase matrix H(z) can be written in the form

H(z) =

( g−2∏
k=0

(I − vkvt
k + zvkvt

k)
)
H0 (5.6)

with vk = (vk,1, ..., vk,M)t unit vectors in RM . Also the prime factors I − vkvt
k + zvkvt

k ∈MM×M and M-wavelet
matrix A can be constructed explicitly from a0 and H0.

Proof. We wish to obtain vk such that the relationship (5.6) holds. Multiplying by H−1
0 to the right you get

H(z)H−1
0 = A0H−1

0 + zA1H−1
0 + ... + zg−1Ag−1H−1

0 =

g−2∏
k=0

(I − vkvt
k + zvkvt

k).
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Doing B0
k = 1

M AkHt
0 we have that

H(z)H−1
0 = B0

0 + zB0
1 + ... + zg−1B0

g−1 ≡

g−2∏
k=0

(I − vkvt
k + zvkvt

k). (5.7)

The first row of each B0
k is known, since we know H−1

0 and the first row of Ak; but the remaining M − 1 rows
of each matrix B0

k are indeterminate. We will denote by β0
k the first row of the matrix B0

k of order M × M. If
we write αk for the subvectors of length M of the scaling sequence {a0,k}, then as {a0,k} is a scaling sequence
and

(g−l)M−1∑
k=0

a0,ka0,k+Ml = Mδ0,l,

we have that
g−1−l∑
k=0

αk+lα
t
k = Mδ0,l. (5.8)

On the other hand
g−1∑
k=0

αk = (1, 1, ..., 1) (5.9)

since H0 = A0 + A1 + ... + Ag−1 is a Haar matrix (see Lemma 5.2).
We will show that

g−1∑
k=0

β0
k = (1, 0, ..., 0) (5.10)

and
g−1−l∑
k=0

β0
k+lβ

0t
k = δ0,l (5.11)

To demonstrate (5.10) note that

g−1∑
k=0

β0
k =

g−1∑
k=0

αk
1
M

Ht
0 =

1
M

( g−1∑
k=0

M−1∑
i=0

a0,i+kM ,

g−1∑
k=0

M−1∑
i=0

a0,i+kMh1,i, ...,

g−1∑
k=0

M−1∑
i=0

a0,i+kMhM−1,i

)
.

From (2.2) it follows

1
M

g−1∑
k=0

M−1∑
i=0

a0,i+kM =
1
M

Mg−1∑
k=0

a0,k = 1 para l = 1, 2, ...,M − 1;

From (5.1) it follows

1
M

g−1∑
k=0

M−1∑
i=0

a0,i+kMhl,i =
1
M

M−1∑
i=0

( g−1∑
k=0

a0,i+kM

)
hl,i =

1
M

M−1∑
i=0

h0,ihl,i = 0.

To obtain (5.11) as B0
k = 1

M AkHt
0 we have that β0

k = 1
MαkHt

0, then

β0t
k =

1
M

Htt
0α

t
k =

1
M

H0α
t
k.
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Thus

β0
k+lβ

0t
k =

1
M2αk+lHt

0H0α
t
k =

1
M2αk+lMIαt

k =
1
M
αk+lα

t
k

therefore,

g−1−l∑
k=0

β0
k+lβ

0t
k =

1
M

g−1−l∑
k=0

αk+lα
t
k =

1
M

Mδ0,l = δ0,l.

As

B0
g−1 = v0(vt

0v1)(vt
1v2)...(vt

g−3vg−2)vt
g−2

and vt
kvk+1 ∈ R for all k = 0, 1, ..., g − 3 we deduce that B0

g−1 = λv0vt
g−2 for some λ ∈ R. Therefore, the rows

of B0
g−1 are proportional to vt

g−2 and B0
g−1 has rank 1

Also, if we write v0 = (v0
0, ..., v

M−1
0 )t you have that β0

g−1 = λv0
0vt

g−2. Since vg−2 must be unitary, we have
that

vt
g−2 =

β0
g−1

‖β0
g−1‖

. (5.12)

Note that all rows of B0
g−1 are multiples of the first row. The next step is to find vg−3. It is easy to verify that(
I − vg−2vt

g−2 + zvg−2vt
g−2

)−1
= I − vg−2vt

g−2 + z−1vg−2vt
g−2

Multiplying in (5.7) by the inverse matrix of
(
I − vg−2vt

g−2 + zvg−2vt
g−2

)
we have that

H(z)H−1
0 (I − vg−2vt

g−2 + z−1vg−2vt
g−2) =

g−3∏
k=0

(I − vkvt
k + zvkvt

k)

≡ B1
0 + zB1

1 + ... + zg−2B1
g−2 (5.13)

As we know the matrix H−1
0 (I − vg−2vt

g−2 + z−1vg−2vt
g−2) and the first row of H(z), then we know each of the

first rows β1
k of the B1

k for k = 0, 1, ..., g − 2 then

B1
0 + zB1

1 + ... + zg−2B1
g−2 =

g−2∑
s=0

B1
szs

= (B0
0 + zB0

1 + ... + zg−2B0
g−2)(I − vg−2vt

g−2 + z−1vg−2vt
g−2)

=

g−1∑
s=0

B0
s(I − vg−2vt

g−2)zs +

g−1∑
s=0

B0
szs−1vg−2vt

g−2.

Making a change of variable, we have that

B1
0 + zB1

1 + ... + zg−2B1
g−2 =

g−1∑
s=0

B0
s(I − vg−2vt

g−2)zs +

g−2∑
s=−1

B0
s+1zsvg−2vt

g−2;
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Thus

B0
0vg−2vt

g−2 = 0 ⇒ β0
0vg−2vt

g−2 = 0 (5.14)

B1
k = B0

k(I − vg−2vt
g−2) + B0

k+1vg−2vt
g−2

⇒ β1
k = β0

k(I − vg−2vt
g−2) + β0

k+1vg−2vt
g−2 , k = 0, ..., g − 2 (5.15)

B0
g−1(I − vg−2vt

g−2) = 0 ⇒ β0
g−1(I − vg−2vt

g−2) = 0. (5.16)

Therefore
g−2−l∑
k=0

β1
k+lβ

1t
k = δ0, l , l = 0, 1, ..., g − 2 (5.17)

and
g−2∑
k=0

β1
k = (1, 0, ..., 0). (5.18)

To test (5.17) we use (5.15) getting

g−2−l∑
k=0

β1
k+lβ

1t
k =

g−2−l∑
k=0

[
β0

k+l(I − vg−2vt
g−2) + β0

k+l+1vg−2vt
g−2

][
β0

k(I − vg−2vt
g−2) + β0

k+1vg−2vt
g−2

]t

=

g−2−l∑
k=0

β0
k+l(I − vg−2vt

g−2)(I − vg−2vt
g−2)β0t

k +

g−2−l∑
k=0

β0
k+l(I − vg−2vt

g−2)vg−2vt
g−2β

0t
k+1

+

g−2−l∑
k=0

β0
k+l+1vg−2vt

g−2(I − vg−2vt
g−2)β0t

k +

g−2−l∑
k=0

β0
k+l+1vg−2vt

g−2vg−2vt
g−2β

0t
k+1

=

g−2−l∑
k=0

β0
k+l(I − vg−2vt

g−2)β0t
k +

g−2−l∑
k=0

β0
k+1+lvg−2vt

g−2β
0t
k+1.

By (5.16) we have that

g−2−l∑
k=0

β0
k+l(I − vg−2vt

g−2)β0t
k =

g−1−l∑
k=0

β0
k+l(I − vg−2vt

g−2)β0t
k .

Making the change of variable s = k + 1 and applying (5.14) we have that

g−2−l∑
k=0

β0
k+1+lvg−2vt

g−2β
0t
k+1 =

g−1−l∑
s=0

β0
s+lvg−2vt

g−2β
0t
s .

Thus
g−2−l∑
k=0

β1
k+lβ

1t
k =

g−1−l∑
k=0

β0
k+l(I − vg−2vt

g−2)β0t
k +

g−1−l∑
s=0

β0
s+lvg−2vt

g−2β
0t
s

=

g−1−l∑
k=0

β0
k+lβ

0t
k

= δ0,l by (5.11).
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To test (5.18) we use (5.14), (5.15) and (5.16) getting

g−2∑
k=0

β1
k =

g−2∑
k=0

β0
k(I − vg−2vt

g−2) + β0
k+1vg−2vt

g−2

=

g−1∑
k=0

β0
k(I − vg−2vt

g−2) +

g−2∑
k=0

β0
k+1vg−2vt

g−2

=

g−1∑
k=0

β0
k

= (1, 0, ..., 0) by (5.10)

with this

(v0vt
0)(v1vt

1)...(vg−3vt
g−3) = B1

g−2,

since we want vt
g−3 unit, we have that

vt
g−3 =

βt
g−2

‖β1
g−2‖

, (5.19)

where β1
g−2 is known.

We iterate this procedure to determine vg−4, ..., v1 until you reach the point where you have to find v0
from

Bg−2
0 + zBg−2

1 = I − v0vt
0 + zv0vt

0. (5.20)

So, we deduce that Bg−2
1 = v0vt

0, thus

vt
0 =

β
g−2
1

‖β
g−2
1 ‖

.

To finish we must show that H(eiω)Ht(e−iω) = MI, by lemma 5.2 we deduce that A = (A0, A1, ..., Ag−1)
is an M-wavelet matrix, but

H(eiω)Ht(e−iω) =

g−1∏
k=0

(I − vkvt
k + eiωvkvt

k)H0Ht
0(I − vkvt

k + e−iωvkvt
k)

= M
g−1∏
k=0

(I − vkvt
k + eiωvkvt

k)(I − vkvt
k + e−iωvkvt

k)

= MI.

In Theorem 5.1 we have started with a scaling sequence a0 = (a0,0, a0,1, ..., a0,Mg−1), a Haar matrix and
we have found prime factors I − vkvt

k + zvkvt
k, k = 0, 1, ..., g − 2 such that (5.6) produces a matrix H(z)

satisfying H(z)H∗(z) = MI when |z| = 1. Writing H(z) as A0 + zA1 + ... + zg−1Ag−1 the matrix

A = (A0, A1, ..., Ag−1)

of order M×M(g−1) is an M-wavelet matrix (by Lemma 5.2) and its characteristic Haar matrix is H(z)|z=1 =

H0.
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6. Examples of M-wavelets with N vanishing moments

Now we will use the methods developed previously for constructing M-wavelet matrix with N vanishing
moments. In all the examples we will take N = 2 and we will contruct matrices A with overlap g = 2.

Let H0 be an matrix of Haar type of order M × M. As N = g = 2 the polyphase matrix is

H(z) = A0 + zA1 = (I − v0vt
0 + zv0vt

0)H0 (6.1)

where vt
0 is a row vector of RM . Let α0 , α1 be the two subvectors of length M of the scaling sequence. Of

(5.12) and the definition of B0 and B1 we deduce that

vt
0 =

β0
1

‖β0
1‖

y β0
1 =

1
M
α1Ht

0.

As

‖β0
1‖

2
2 = β0

1.(β
0
1)t =

1
M2α1Ht

0H0α
t
1 =

1
M
α1α

t
1,

we have that

v0vt
0 =

M
α1α

t
1

1
M2 H0α

t
1α1Ht

0 =
1

α1α
t
1

1
M

H0α
t
1α1Ht

0.

Thus of (6.1)

A1 = v0vt
0H0 =

1
α1α

t
1

H0α
t
1α1 (6.2)

and
A0 = (I − v0vt

0)H0 = H0 − A1. (6.3)

With the formulas (6.2) and (6.3) we will make the examples next.

Example 6.1: Let M = 3, N = 2 and H0 = DCT of order 3.
From Example 4.1 of Section 4 we take the scaling sequence

{
a0,k

}
=

{
3 +
√

57
18

,
9 +
√

57
18

,
15 +

√
57

18
,

15 −
√

57
18

,
9 −
√

57
18

,
3 −
√

57
18

}
,

and we write

α0 =
(3 +

√
57

18
,

9 +
√

57
18

,
15 +

√
57

18

)
, α1 =

(15 −
√

57
18

,
9 −
√

57
18

,
3 −
√

57
18

)
.

The DCT matrix of order 3 is (see chapter 9 of [HW])

H0 =


1 1 1

√
2cos π6 0 −

√
2cos π6√

2cos π3 −
√

2
√

2cos π3

 =


1 1 1
√

3
√

2
0 −

√
3
√

2
1
√

2
−
√

2 1
√

2

 .
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From (6.2) it follows,

A1 =
1

α1α
t
1

H0α
t
1α1 ≈

 0.408600 0.0759177 −0.249532
1.40158 0.260411 −0.855950

0.00889283 0.00165241 −0.00543108

 .
And from (6.3) it follows,

A0 = H0 − A1 ≈

 0.591399 0.924082 1.24953
−0.176838 −0.260411 −0.368794
0.698213 −1.41586 0.712537

 .
Therefore, a 3-wavelet matrix with 2 vanishing moments is

A =

 0.591399 0.924082 1.24953 0.408600 0.0759177 −0.249532
−0.176838 −0.260411 −0.368794 1.40158 0.260411 −0.855950
0.698213 −1.41586 0.712537 0.00889283 0.00165241 −0.00543108

 .
Example 6.2: Let M = 4, N = 2 and H0 = DCT of order 4.
From Example 4.2 of Secction 4 we take the scaling sequence

{
a0,k

}
=

{
1 +
√

11
8

,
3 +
√

11
8

,
5 +
√

11
8

,
7 +
√

11
8

,
7 −
√

11
8

,
5 −
√

11
8

,
3 −
√

11
8

,
1 −
√

11
8

}
,

and we write

α0 =
(1 +

√
11

8
,

3 +
√

11
8

,
5 +
√

11
8

,
7 +
√

11
8

)
, α1 =

(7 −
√

11
8

,
5 −
√

11
8

,
3 −
√

11
8

,
1 −
√

11
8

)
.

The DCT matrix of order 3 is (see chapter 9 of [HW])

H0 =


1 1 1 1

√
2cos π8

√
2cos 3π

8 −
√

2cos 3π
8 −

√
2cos π8

1 −1 −1 1
√

2cos 3π
8 −

√
2cos π8

√
2cos π8 −

√
2cos 3π

8

 .
From (6.2) it follows,

A1 =
1

α1α
t
1

H0α
t
1α1 ≈


0.460421 0.210422 −0.03957 −0.289577
1.50275 0.686788 −0.129173 −0.945143

0 0 0 0
0.106788 0.0488104 −0.00917824 −0.0671682

 .
And from (6.3) it follows,

A0 = H0 − A1 ≈


0.539578 0.789577 1.03957 1.28957
−0.196190 −0.145592 −0.412018 −0.361420

1 −1 −1 1
0.434407 −1.35537 1.31574 −0.474027

 .
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Therefore, a 4-wavelet matrix with 2 vanishing moments is
0.53957 0.78957 1.0395 1.2895 0.46042 0.21042 −0.0395 −0.28957
−0.19619 −0.14559 −0.41201 −0.36142 1.5027 0.68678 −0.12917 −0.94514

1 −1 −1 1 0 0 0 0
0.43440 −1.3553 1.3157 −0.47402 0.10678 0.04881 −0.00917 −0.06716

 .

Example 6.3: Let M = 4, N = 2 and H0 = Hadamard matrix of order 4.
With {a0,k}, α0 and α1 as in example 6.2 we take as Haar’s matrix a Hadamard’s matrix of order 4

H0 =


1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1

 .
From (6.2) it follows,

A1 =
1

α1α
t
1

H0α
t
1α1 ≈


0.460421 0.210422 −0.03957 −0.28957
−0.673746 −0.307915 −0.0579155 0.423746
−1.34749 −0.615831 0.115831 0.847493

0 0 0 0

 .
And from (6.3) it follows,

A0 = H0 − A1 =


0.539578 0.789577 1.03957 1.28957
−0.326253 1.30791 −1.05791 0.576253
0.341493 −0.384168 0.884168 0.152506

1 −1 −1 1

 .
Therefore, other 4-wavelet matrix with 2 vanishing moments is

0.539578 0.789577 1.03957 1.28957 0.460421 0.210422 −0.03957 −0.28957
−0.326253 1.30791 −1.05791 0.576253 −0.326253 1.30791 −1.05791 0.576253
0.341493 −0.384168 0.884168 0.152506 −1.34749 −0.615831 0.115831 0.847493

1 −1 −1 1 0 0 0 0

 .
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