

Facultad de Ciencias Básicas ©Programa de Matemáticas Vol. IV, Nº 2, (2017)

Sobre la Existencia y Unicidad de Soluciones para un Sistema de Ecuaciones No Lineal.

On the Existence and Uniqueness of the Solutions of a System of Non-Linear Differential Equations.

Miguel José Vivas Cortez^a, Juan C. Osorio^b

mjvivas@puce.edu.ec and jcosorio@puce.edu.ec

^aPontificia Universidad Católica del Ecuador Facultad de Ciencias Naturales y Exactas Escuela de Ciencias Físicas y Mtemáticas, Sede Quito, Ecuador ^bPontifícia Universidad Católica del Ecuador. (PUCE)

Resumen

En este artículo demostraremos un teorema de existencia y unicidad para un sistema de ecuaciones lineales que incluye como consecuencia a los Modelos de Volterra

Palabras claves: Sistemas No Lineales, Ecuaciones diferenciales, Modelos de Volterra.

Abstract

In this work we present an existence and uniqueness Theorem for a very especial class of a non-linear system of differential equations which include The Volterra Models..

Keywords: non-linear systems, differential equations, Volterra Models.

1. Introduction

The study of differential equations have multiple impact in science and everyday life. It is the case that the Lotka-Volterra type of models are the most people work on, but also press-predator models and and competitive models as well [1][2].

It is also well know the extraordinary development of the theory o differential equations with finite or infinite delay.

In [1], Montes de Oca and Miguel Vivas, studied the system of differential of Lotka-Volterra type with

infinite delay.

$$\begin{cases} x_1'(t) = x_1(t)[a(t) - b(t)x_1(t) - c_1(t) \int_{-\infty}^t k_1(t - s)x_2(s) \, ds] \\ x_2'(t) = x_2(t)[d(t) - f(t)x_2(t) - e_1(t) \int_{-\infty}^t k_2(t - s)x_1(s) \, ds] & \text{if } t \ge t_0 \\ x_1(t) = \phi_1(t) \land x_2(t) = \phi_2(t) & \text{if } t < t_0 \end{cases}$$

$$(1)$$

where the derivation at t_0 should be interpreted as the derivative from the right, that is to say; $x'_i(t_0) = x'_{i_+}(t_0)$ for i = 1, 2 and a(t), b(t), c(t), d(t), e(t), y f(t) are bounded positive from above and from below with positive constants which satisfies

$$c(t)d(t) \le a(t)f(t)$$

$$b(t)d(t) \le (t)a(t)$$

And also $k_i : [0, +\infty) \longrightarrow [0, +\infty)$ are continuous and positive kernels such that: $\int_0^{+\infty} k_i(s) ds = 1$ and the $\phi_i's$ are the initial conditions.

In this work we present an existence and uniqueness theorem for the more general case than (1), System (1) can be written as:

$$x'(t) - h(t, x(t)) - A(x(t)) \int_{-\infty}^{t} g(t, \tau, x(\tau)) d\tau$$
 (2)

where

$$x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}; A(x) = \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix}$$
$$h: (-\infty, +\infty) \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$g: \{(t, s) \in \mathbb{R}^2 / s \le t\} \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

are continuous and are given by

$$h(t,x) = \begin{pmatrix} a(t)x_1 - b(t)(x_1)^2 \\ d(t)x_2 - e(t)(x_2)^2 \end{pmatrix}$$
(3)

$$g(t, s, x) = \begin{pmatrix} c(t)k_1(t - s)x_2 \\ f(t)k_2(t - s)x_1 \end{pmatrix}$$
 (4)

It is very important to note that:

$$||A(t)|| \le |x_1| + |x_2| = ||x||$$
 (*)

1.1. Preliminary Results

Lemma 1. The function $h: (-\infty, +\infty) \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by (3) satisfied a local Lipschitz condition on x, in the sense that for each $(t_0, x_0) \in (\mathbb{R}^* \cup \{0\}) \times \mathbb{R}^2$ and each M > 0, There exist k > 0 such that, if $||x - x_0|| \le M$; $||\bar{x} - x_0|| \le M$ and $||t - t_0|| \le M$, then;

$$||h(t, x) - h(t, \bar{x})|| \le k||x - \bar{x}||$$

where

$$||(x_1, x_2)|| = |x_1| + |x_2|$$

Proof:

Let us observe that

$$k = \max\{a_M + 2Mb_M, d_M + 2Me_M\}$$

satisfies the previous conditions; where

$$a_L \le a(t) \le a_M$$
, $b_L \le b(t) \le b_M$

$$d_L \le d(t) \le d_M$$
 and $e_L \le e(t) \le e_M$.

Lemma 2. The function g defined in (4) satisfies a local Lipschitz condition on x, in the following sense: For each M > 0 There exist k > 0 such that: if $-M \le s \le t \le M$, $||x|| \le M$, $||\bar{x}|| \le M$ Then;

$$||g(t, s, x) - g(t, s, \bar{x})|| \le k||x - \bar{x}||$$

Proof:

$$||g(t, s, x) - g(t, s, \bar{x})|| = \left\| \begin{pmatrix} c(t)k_1(t - s)(x_2 - \bar{x_2}) \\ f(t)k_2(t - s)(x_1 - \bar{x_1}) \end{pmatrix} \right\|$$

$$\leq k(|x_1 - \bar{x_1}| + |x_2 - \bar{x_2}|)$$

$$= k||x - \bar{x}||$$

$$k = \max\{c_M \max_{s \in [0,M]} k_1(s), c_M \max_{s \in [0,M]} k_2(s)\}$$

Lemma 3. *let* $t_0 \ge 0$, *then the set*

$$B(t_0) = \{\Phi = (\phi_1, \phi_2)\phi_1, \phi_2 \in FA_{t_0}\}\$$

where

$$FA_{t_0} = \{\phi : (-\infty, t_0) \longrightarrow \mathbb{R}^+ \cup \{0\})/\phi \text{ is continuous, bounded above and } \phi(t_0) > 0\}$$

is a convex subset of the space of all continuous functions $\Phi: (-\infty, t_0] \longrightarrow \mathbb{R}^2$ and satisfies that if $\Phi \in B(t_0)$, then

$$G(t,t_0,\Phi) = \int_{-\infty}^{t_0} g(t,t_s,\Phi(s)) ds$$

defines a continuous function in $[t_0, +\infty)$ where

$$g(t, s, (\phi_1, \phi_2)) = \begin{pmatrix} c(t)k_1(t-s)\phi_2 \\ f(t)k_2(t-s)\phi_1 \end{pmatrix}$$

Proof:

let $\alpha\lambda \in [0, 1)$ with $\alpha + \lambda = 1$ and $(\phi_1, \phi_2), (\bar{\phi_1}, \bar{\phi_2}) \in B(t_0)$. Then

$$\alpha(\phi_1, \phi_2) + \lambda(\bar{\phi_1}, \bar{\phi_2}) = (\alpha\phi_1 + \lambda\bar{\phi_1}, \alpha\phi_2 + \lambda\bar{\phi_2})$$

Also, $\phi_1, \bar{\phi}_1, \phi_2, \bar{\phi}_2 \in FA_{t_0}$ and α, λ are non-negative and they do not vanish simultaneously, them $\alpha\phi_1, \lambda\bar{\phi}_1, \alpha\phi_2, \lambda\bar{\phi}_2$ are continuous on $[t_0, +\infty)$, non-negative, strictly positive on to and bounded.

Thus $\alpha\phi_1 + \lambda\bar{\phi}_1$, $\alpha\phi_2 + \lambda\bar{\phi}_2$ belong to FA_{t_0} . from where $(\alpha\phi_1 + \lambda\bar{\phi}_1, \alpha\phi_2 + \lambda\bar{\phi}_2) \in B(t_0)$ and therefore $B(t_0)$ is convex.

On the other hand,

i.) $G(t, t_0, \Phi)$ is well defined since

$$\int_{-\infty}^{t_0} c(t)k_1(t-s)\phi_2(s) ds \le c_M \phi_{2M} \int_{-\infty}^{t_0} k_1(t-s) ds$$

$$= c_M \phi_{2M} \int_{t-t_0}^{+\infty} k_1(\sigma) d\sigma$$

$$\le c_M \phi_{2M} \int_0^{+\infty} k_1(\sigma) d\sigma$$

$$= \le c_M \phi_{2M} < +\infty$$

similarly

$$\int_{-\infty}^{t_0} f(t)k_2(t-s)\phi_1(s) \, ds \le f_M \phi_{1M} < +\infty$$

ii.) $G(t, t_0, \Phi)$ in continuous at each $t_0 \le \bar{t}$, being that if we consider the interval $[t_0, d]$ such that $t_0 \le \bar{t} \le d, k$ then each component

$$G_1(t, t_0, \Phi) = G_1(t, t_0, (\phi_1, \phi_2)) = \int_{-\infty}^{t_0} c(t)k_1(t - s)\phi_2(s) ds$$

and

$$G_2(t, t_0, \Phi) = \int_{-\infty}^{t_0} f(t)k_2(t-s)\phi_1(s) ds$$

is continuous in \bar{t} , to see this look at Theorem 14-21,Page 421 [4]. Now, the integral

$$\int_{-\infty}^{t_0} c(t)k_1(t-s)\phi_2(s)\,ds$$

can be written as

$$\int_{-t_0}^{+\infty} c(t)k_1(t+s)\phi_2(-s)\,ds$$

Now

$$\int_{-t_0}^{+\infty} c(t)\phi_2(s)k_1(t+s) \, ds \le c_M \Phi_{2M} \int_{-t_0}^{+\infty} k_1(t+s) \, ds$$
$$\le c_M \Phi_{2M} \int_{t-t_0}^{+\infty} k_1(\sigma) \, d\sigma$$
$$\le c_M \Phi_{2M} \bar{k}_1$$

Also, given $\varepsilon > 0$ there exists R > 0 such that

$$\left| \int_{-t_0}^b k_1(\sigma) \, d\sigma - \int_{-t_0}^{+\infty} k_1(\sigma) \, d\sigma \right| < \frac{\varepsilon}{c_M \Phi_{2M} + 1}$$

 $\forall b \geq R$ and $t \in [t_0, d]$ let $b > R - t_0$, then $t_0 \leq t \leq d$ implies that $t_0 + b \leq t + b \leq d + b$ which also implies that $R \leq t + b \leq d + b$ son, given $\varepsilon > 0$ there exists R > 0 such that for $b > R - t_0$

$$\int_{b}^{+\infty} c(t)\phi_{2}(s)k_{1}(t+s) ds \leq c_{M}\Phi_{2M} \int_{b}^{+\infty} k_{1}(t+s) ds$$

$$= c_{M}\Phi_{2M} \int_{t+b}^{+\infty} k_{1}(\sigma) d\sigma$$

$$\leq c_{M}\Phi_{2M}\varepsilon < \varepsilon$$

for every $t \in [t_0, d]$ Therefore, $\int_b^{+\infty} c(t)\phi_2(s)k_1(t+s)\,ds$ converges uniformly on $[t_0, d]$. In consequence $G_1(t, t_0, \Phi)$ is continuous in \bar{t} (we say even more in $[t_0, d]$). By the same token $G_2(t, t_0, \Phi)$ is continuous in \bar{t} . Therefore $G(t, t_0, \Phi)$ is continuous for every $\bar{t} \ge t_0$.

2. Existence and Uniqueness Theorem

An existence and theorem or equation (2) is given.

In fact, given a real number and an initial function $\Phi \in B(t_0)$ we look for a continuous solution $x(t) = x(t, t_0, \Phi)$ that satisfies (2) for every $t \in [t_0, t_0 + \beta)$ for some $\beta > 0$ and $x(t) = \phi(t)$ for all $t \le t_0$. let us observe that if x(t) is a solution, that x(t) is also a solution of the integral equation.

$$x(t) = \begin{cases} \phi(t) & \text{if } t \le t_0 \\ f(t) & \text{if } t \in [t_0, t_0 + \beta] \end{cases}$$
 (I)

where

$$f(t) = \Phi(t_0) + \int_{t_0}^t [h(s, x(s)) - A(x(s))G(s, t_0, \Phi)] ds - \int_{t_0}^t \int_{t_0}^s [A(x(s))g(s, \tau, x(\tau))] d\tau ds$$

Conversely, every function x(t) which satisfies (I) is necessarily a solution of the system (2) with initial function Φ . So the problem of existence of solutions of equation (2) is equivalent to the problem of existence of (I).

The right hand side of (I) define a continuous function in $(-\infty, t_0 + \beta)$ for every $\Phi \in B(t_0)$, $t \ge 0$ and

$$x(t) = \begin{cases} \phi(t) & \text{if } t \le t_0 \\ \omega(x_1, x_2) & \text{if } t_0 \le t \le t_0 + \beta \end{cases}$$

even more, it is continuously differentiable on $[t_0, t_0 + \beta]$.

From that point of view, (I) allows us to define an operator P which send the continuous function

$$x(t) = \begin{cases} \phi(t) & \text{if } t \le t_0 \\ \omega(x_1, x_2) & \text{if } t_0 \le t \le t_0 + \beta \end{cases}$$

to the continuous function given by the right hand side of (I). In particular, if $x(t) = x(t, t_0, \Phi)$ is a solution of I, then,

$$(Px)(t) = x(t)$$

Then, the solutions to (I), or it is equivalent in the original problem (2) with initial condition (t_0, Φ) , appear to be the fixed points of the operator P.

Now, to determinate the existence and uniqueness of a fixed point we will use the principle of the contraction applications.

For that, we need to define P on a subset S of the continuous function from $(-\infty, t_0 + \beta] \longrightarrow \mathbb{R}^2$ to which we impose certain conditions such that it is a complete metric space, P is a map from S to itself and P and P be a contraction.

Given problem (2) with the initial condition $\Phi \in B(t_0)$, $t_0 \ge 0$, and positive constants M and β , we consider the set S those function x which satisfies the following conditions:

- a.) $x \in C[(-\infty, t_0 + \beta], \mathbb{R}^2]$
- b.) $x(t) = \phi(t) \text{ if } t \le t_0$
- c.) $||x(t_1) x(t_2)|| \le M|t_1 t_2|$ for $t_1, t_2 \in [t_0, t_0 + \beta]$
- d.) $||x(t) \Phi(t_0)|| \le 1$ for $t \in [t_0, t_0 + \beta]$

and then on S we define the function.

$$\rho(x_1, x_2) = \max_{t \in [t_0, t_0 + \beta)} ||x_1(t) - x_2(t)||$$

So (S, ρ) is a complete metric space, and if M and β are selected appropriately, P will be a contraction from S to itself.

Lemma 4. There exist M and β such that $\Phi \in B(t_0)$, $t_0 \le 0$ such that the operator P act from (S, ρ) to itself and is a contraction

Proof:

Let β_1 , be a positive real number less than 1, now because of the continuity of the functions h, g, G and the compactness of the interval $[t_0, t_0 + \beta]$ and the sets

$$C_1 = \{(t,x) \in \mathbb{R} \times \mathbb{R}^2 / \|x(t) - \Phi(t_0)\| \leq 1 \;, t \in [t_0,t_0+\beta_1] \}$$

$$C_2 = \{(t, s, x) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^2 / ||x(t) - \Phi(t_0)|| \le 1, t_0 \le s \le t \le t_0 + \beta_1 \}$$

there exists positive constants M_1, M_2 and M_3 such that

$$||h(t, x)|| \le M_1 \quad \text{for all} \quad (t, x) \in C_1$$
 (5)

$$||G(t, t_0, \Phi)|| \le M_2 \quad \text{for all} \quad t \in [t_0, t_0 + \beta]$$
 (6)

$$||g(s,\tau,x)|| \le M_3$$
 for all $(s,\tau,x) \in C_3$ (7)

We choose $M \in \mathbb{R}^+$ such that

$$M_1 + (M_2 M_3)(1 + ||a(\Phi(t_0)||) \le M$$
(8)

If we apply the local Lipschitz condition for h(t, x) at the point $(t_0, \Phi(t_0))$ to the set

$$C_3 = \{(t, x) \in \mathbb{R} \times \mathbb{R}^2 / ||x(t) - \Phi(t_0)|| \le 1, |t - t_0| \le 1\}$$

we obtain that there exist $L_1 \in \mathbb{R}^+$ such that if (t, x) and $(t, \bar{x}) \in C_3$ then

$$||h(t,x) - h(t,\bar{x})|| \le L_1|x - \bar{x}| \tag{9}$$

Similarly, using the Lipschitz condition for g in the set

$$C_4 = \{(t, s, x) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^2 / ||x|| \le T, -T \le s \le t \le T\}$$

where $T = \max\{t_0 + \beta, 1 + ||\Phi(t_0)||\}$, there exist an $L_2 \in \mathbb{R}^+$ such that if $(t, s, x), (t, s, \bar{x}) \in C_4$ then

$$||g(t, s, x) - g(t, s, \bar{x})|| \le L_2|x - \bar{x}|$$
 (10)

Let $L = \max\{L_1, L_2\}$ and pick $\beta \in \mathbb{R}^+$ such that

$$\beta < \beta_1$$
 and $\beta_1 < \frac{1}{2M + 2L + L||\Phi(t_0)||}$ (11)

The condition $0 < \beta < \beta_1 < 1$ implies that $\beta^2 < \beta$. The second condition implies that $\beta < \frac{1}{M}$. If we consider the space (S, ρ) with M by (8) and β given by (11) then for $x \in S$ we have that.

$$||x(s) - \Phi(t_0)|| \le 1$$

for every $s \in [t_0, t_0 + \beta]$ therefore

$$(s, x(s)) \in C_1 \quad \text{for every} \quad s \in [t_0, t_0 + \beta]$$

It is also easy to verify that if $t_0 \le \tau \le s \le t \le t_0 + \beta$ then $(s, \tau, x(\tau)) \in C_2$ and the

$$\beta_1 ||g(s, \tau, x(\tau))|| \le M_3 \quad \text{for} \quad t_0 \le \tau \le s \le t \le t_0 + \beta$$
 (13)

Also, if $x, \bar{x} \in S$ then (s, x(s)) and $(s, \bar{x}(s)) \in C_3$ for every $s \in [t_0, t_0 + \beta]$ and $(s, \tau, x(\tau)), (s, \tau, \bar{x}(\tau)) \in C_4$ if $t_0 \le \tau \le s \le t \le t_0 + \beta$. So we get that

$$||h(s, x(s)) - h(s, \bar{x}(s))|| \le L|x(s) - \bar{x}(s)| \le L\rho(x, \bar{x}) \quad s \in [t_0, t_0 + \beta]$$
(14)

And every $t_0 \le \tau \le s \le t \le t_0 + \beta$

$$||g(s,\tau,x(\tau)) - g(s,\tau,\bar{x}(\tau))|| \le L|x(s) - \bar{x}(s)| \le L\rho(x,\bar{x}). \tag{15}$$

The technique we will use in the next proof is similar to that of Theorem 3.3.5 Page 193 [3].

2.1. The Main Theorem

Theorem 1. (Existence and Uniqueness) Let $t_0 \ge 0$ and $\Phi \in B(t_0)$. Then there exist a unique solution $x(t) = x(t, t_0, \Phi)$ of (2) defined in the interval $[t_0, t_0 + \beta]$ for some $\beta > 0$ and $x(t, t_0, \phi) = \Phi(t)$ for $x \le t_0$. **Proof:**

Consider the metric space (S, ρ) given above, with M as in (8) and β as in (11). Let the operator P, define for $x \in S$ by

$$(Px)(t) = \begin{cases} \Phi(t) & \text{if } t \ge t_0 \\ \Phi(t_0) + \int_{t_0}^t [h(s, x(s)) - A(x(s))G(s, t_0, \Phi)] ds \\ - \int_{t_0}^t \int_{t_0}^s [A(x(s))g(s, \tau, x(\tau))] d\tau ds & \text{if } t \in [t_0, t_0 + \beta] \end{cases}$$

from (5), (6), (8), (12) and (13) P is a mapping from S to S and

$$||Px(t) - \Phi(t_0)|| \leq \int_{t_0}^t ||h(s, x(s))|| \, ds + \int_{t_0}^t ||A(x(s))||||G(s, t_0, \Phi)|| \, ds$$

$$+ \int_{t_0}^t ||A(x(s))|| \int_{t_0}^s ||g(s, \tau, x(\tau))|| \, d\tau \, ds$$

$$\leq M_1 \int_{t_0}^t ds + \int_{t_0}^t ||x(s)|| M_2 \, ds + \int_{t_0}^t ||x(s)|| \int_{t_0}^s \frac{M_3}{\beta_1} d\tau \, ds$$

$$\leq M_1(t - t_0) + (1 + ||\Phi(t_0)||) M_2(t - t_0)$$

$$+ (1 + ||\Phi(t_0)||) \frac{M_3}{2} \frac{(t - t_0)^2}{\beta_1}$$

$$\leq M_1 \beta + (1 + ||\Phi(t_0)||) M_2 \beta + (1 + ||\Phi(t_0)||) \frac{M_3}{2} \frac{\beta^2}{\beta_1}$$

Then

$$||Px(t) - \Phi(t_0)|| \le M_1 \beta + (1 + ||\Phi(t_0)||) M_2 \beta + (1 + ||\Phi(t_0)||) M_3 \beta$$

= $(M_1 + (1 + ||\Phi(t_0)||) (M_2 + M_3)) \beta \le M \beta < 1$

Similar, for $t_1, t_2 \in [t_0, t_0 + \beta]$ with $t_1 < t_2$ we have that

$$||(Px)(t_{1}) - (Px)(t_{2})|| \leq \int_{t_{1}}^{t_{2}} ||h(s, x(s))|| \, ds + \int_{t_{1}}^{t_{2}} ||A(x(s))||||G(s, t_{0}, \Phi)|| \, ds$$

$$+ \int_{t_{1}}^{t_{2}} ||A(x(s))|| \int_{t_{0}}^{s} ||g(s, \tau, x(\tau))|| \, d\tau \, ds$$

$$\leq M_{1} \int_{t_{1}}^{t_{2}} ds + (1 + ||\Phi(t_{0})||) M_{2} \int_{t_{0}}^{t} ds$$

$$+ \int_{t_{0}}^{t} (1 + ||\Phi(t_{0})||) \int_{t_{0}}^{s} \frac{M_{3}}{\beta} d\tau \, ds$$

$$\leq M_{1}(t_{2} - t_{1}) + (1 + ||\Phi(t_{0})||) M_{2}(t_{2} - t_{1})$$

$$+ (1 + ||\Phi(t_{0})||) \frac{M_{3}}{\beta} \int_{t_{1}}^{t_{2}} (s - t_{0}) \, ds$$

$$\leq M(t_{2} - t_{1}) + (1 + ||\Phi(t_{0})||) M(t_{2} - t_{1})$$

$$+ (1 + ||\Phi(t_{0})||) \frac{M_{3}}{\beta} (t_{2} - t_{1})$$

$$= (M_{1} + (1 + ||\Phi(t_{0})||) (M_{2} + M_{3}))(t_{2} - t_{1}) \leq M(t_{2} - t_{1})$$

So Px satisfies the conditions (a),(b),(c), and (d), that is to say that $(Px) \in S$ Finally, let $x, \bar{x} \in S$ and $t \in [t_0, t_0 + \beta]$, now, from (5), (6), (12), (13) and (14) if we let $Q = ||(Px)(t) - (P\bar{x})(t)||$ we have that

$$Q \leq \int_{t_0}^{t} ||h(s, x(s)) - h(s, \bar{x}(s))|| \, ds + \int_{t_0}^{t} ||A(x(s) - \bar{x}(s))|| ||G(s, t_0, \Phi)|| \, ds$$
$$+ \int_{t_0}^{t} \int_{t_0}^{s} ||A(\bar{x}(s))g(s, \tau, \bar{x}(\tau)) - A(x(s))g(s, \tau, x(\tau))|| \, d\tau ds$$

Then

$$Q \leq L_{1} \int_{t_{0}}^{t} ||x(s) - \bar{x}(s)|| \, ds + \int_{t_{0}}^{t} ||x(s) - \bar{x}(s)|| M_{2} \, ds$$

$$+ \int_{t_{0}}^{t} \int_{t_{0}}^{s} ||A(\bar{x}(s))g(s, \tau, \bar{x}(\tau)) - A(\bar{x}(s))g(s, \tau, x(\tau))$$

$$+ A(\bar{x}(s))g(s, \tau, x(\tau) - A(x(s))g(s, \tau, x(\tau))|| d\tau ds$$

$$\leq (L_{1} + M_{2}) \int_{t_{0}}^{t} ||x(s)| - \bar{x}(s)|| \, ds + \int_{t_{0}}^{t} \int_{t_{0}}^{s} ||A(\bar{x}(s))(g(s, \tau, \bar{x}(\tau)) - g(s, \tau, x(\tau)))$$

$$+ (A(\bar{x}(s)) - A(x(s))g(s, \tau, x(\tau))|| d\tau ds$$

$$\leq (L_{1} + M_{2}) \int_{t_{0}}^{t} ||x(s)| - \bar{x}(s)|| \, ds + \int_{t_{0}}^{t} \int_{t_{0}}^{s} ||\bar{x}(s)||L_{2}||\bar{x}(\tau)| - x(\tau)|| d\tau ds$$

$$+ \int_{t_{0}}^{t} \int_{t_{0}}^{s} ||x(s)| - \bar{x}(s)||||g(s, \tau, x(\tau))|| d\tau ds$$

$$\leq (L_{1} + M_{2})(t - t_{0})\rho(x, \bar{x}) + \int_{t_{0}}^{t} (1 + ||\Phi(t_{0})||)\rho(x, \bar{x})(s - t_{0}) \, ds$$

$$+ \int_{t_{0}}^{t} \int_{t_{0}}^{s} \rho(x, \bar{x}) \frac{M_{3}}{\beta_{1}} d\tau ds$$

$$\leq (L_{1} + M_{2})\beta\rho(x, \bar{x}) + \beta(1 + ||\Phi(t_{0})||)\rho(x, \bar{x})(t - t_{0}) + \rho(x, \bar{x}) \frac{M_{3}}{\beta_{1}} \int_{t_{0}}^{t} (s - t_{0}) ds$$

$$\leq (L_{1} + M_{2})\beta\rho(x, \bar{x}) + \beta^{2}(1 + ||\Phi(t_{0})||)\rho(x, \bar{x}) + \rho(x, \bar{x}) \frac{M_{3}}{\beta_{1}} \beta^{2}$$

$$\leq ((L_{1} + M_{2})\beta + \beta(1 + ||\Phi(t_{0})||) + \beta M_{3})\rho(x, \bar{x}) \leq k\rho(x, \bar{x})$$

which means that

$$||(Px)(t) - (P\bar{x})(t)|| \le k\rho(x,\bar{x})$$

for $t \in [t_0, t_0 + \beta]$ and $x, \bar{x} \in S$

So $\rho(Px, P\bar{x}) \le \rho(x, \bar{x})$ for some $\beta > 0$ chosen in such a way that

$$k = ((L_1 + M_1) + (1 + ||\Phi(t_0)||) + M_3)\beta < 1$$

Proving that there exist $\beta > 0$ such that Px is a contraction $[t_0, t_0 + \beta]$ and in consequence there exist a unique $x \in S$ with Px = x

Since the fixed points of P are the solutions of (2) the conclusion follows.

Conclusions

- (1) This theorem of existence and uniqueness illustrate a classical method to assure the existence of solutions of a differential equation, and in this case with infinite delay, but this technique can be extended to some others type o differential equations.
- (2) The existence of the solution in a local result in the interval $[t_0, t_0 + \beta]$ for some $\beta > 0$. Now using traditional methods we can extend the solution to $[t_0, +\infty)$.

Acknowledgement

We would like to thanks Dr. Jorge Vielma for his suggestions that improve the paper.

Referencias

- [1] F. Montes de Oca and M. Vivas, Extinction in two dimensional Lotka-Volterra system with infinite delay, Non-linear Analysis: Real Word Applications (2006)
- [2] F. Montes de Oca and L. Perez, Balancing Survival and Extinction in non-autonomous competitive Lotka-Volterra system with infinite delays, Discrete and Continuos Dynamical Systems Serie B (2015) and periodic solutions of rdinary and
- [3] Burton, T.A.(1985) Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Mathematics in Science and Engineering, 178, Academic Press.
- [4] Tom Apostol (1957), Análisis Matemático, Editorial Reverté, S.A., Barcelona
- [5] VIVAS M., Extinción de sistemas del tipo Lotka-Volterra con retardo, Tesis de Maestriía UCLA, (2001)