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Resumen

En este articulo demostraremos un teorema de existencia y unicidad para un sistema de ecuaciones lineales que incluye
como consecuencia a los Modelos de Volterra
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Abstract

In this work we present an existence and uniqueness Theorem for a very especial class of a non-linear system of diffe-
rential equations which include The Volterra Models..
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1. Introduction

The study of differential equations have multiple impact in science and everyday life. It is the case that
the Lotka-Volterra type of models are the most people work on, but also press-predator models and and
competitive models as well [1][2].

It is also well know the extraordinary development of the theory o differential equations with finite or infinite
delay.
In [1], Montes de Oca and Miguel Vivas, studied the system of differential of Lotka-Volterra type with
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infinite delay.
X (1) = xi(D[a(?) = b(D)xi (1) — ¢1(1) f_twlq(t — $)xa2(s) ds]
x5(1) = x2(D[d(t) — f(D)x2(2) — e1(2) f_tmkz(t —s)xi(s)ds] ift =1 (1)
x1(1) = ¢1(1) A x2(1) = $a(1) ift <ty

where the derivation at 7y should be interpreted as the derivative from the right , that is to say;
x(to) = xl’.+(t0) for i = 1,2 and a(?), b(¢), c(t),d(t), e(t), y f(¢) are bounded positive from above and from
below with positive constants which satisfies

c(d(®) < a@®)f ()
b()d(t) < (H)al(r)

And also k; : [0, +00) — [0, +00) are continuous and positive kernels such that:

f()+ooki(s) ds = 1 and the ¢s are the initial conditions.

In this work we present an existence and uniqueness theorem for the more general case than (1), System (1)
can be written as:

X' (1) = h(t, x(1)) = A(x(1)) f g, 7, x(1))dt )

where

x2() X2
h: (=00, +00) x R? — R?

g:{(t,s) e R*/s <t} x R? — R?

x(t)=( (@) ) ;A<x)=( Y )

are continuous and are given by

_ [ a®xi = b(o)(x1)?

h(t, x) = ( d(t)xy — e(t)(x2)? ) :
| kit = 5)x2

gt s,x) = ( FOka(t = 5)x; ) N

It is very important to note that:
NADI < |xi| + |2l = llxll (%)

1.1.  Preliminary Results

Lemma 1. The function h : (=0, +00) x R2 — R? defined by (3) satisfied a local Lipschitz condition on
X, in the sense that for each (ty, xo) € (R* U {0}) x R2 and each M > 0, There exist k > 0 such that, if
[lx — x0ll < M; ||1X — x0l| < M and |t — to| < M, then;

1Az, x) = h(z, )| < Kl|x — x|
where
1Ger, x2)Il = |x1] + |x2]

Proof:
Let us observe that
k= méx{aM + 2MbM,dM + 2M€M}
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satisfies the previous conditions; where
apr <a(t)y<ay , bp <b(t) < by

d; <d(t) <dy and ep < e(t) < ey.

Lemma 2. The function g defined in (4) satisfies a local Lipschitz condition on x, in the following sense:
For each M > 0 There exist k > 0 such that:
if ~M <s<t<M, x|l <M, |5l < M Then;

llg(t, s, %) — g(t, 5, DIl < kllx — x|

Proof:

( c(Dki(t = 5)(x2 — X2) )
FOka(t = 5)(x1 — %)

< k(lxr — 0l + |x2 = %))

”g([v S, .X) - g([’ S, )_C)” = ‘

= kllx — x|

k = max{cy max ki(s),cy max k)(s)}
s€[0,M] s€[0,M]

Lemma 3. let ty > 0, then the set

B(to) = {® = (¢1,¢2)p1, ¢2 € FA,}

where
FA, ={¢: (—0,1) — R* U{0})/¢ is continuous, bounded above and ¢(ty) > 0}

is a convex subset of the space of all continuous functions ® : (—co, ty] —> R? and satisfies that if ® € B(ty),
then
1o
Glt.t0.) = [ g(tt, @) ds

defines a continuous function in [ty, +00) where

c(Dki(t = 5)2 )

g(t’ s, (¢1’¢2) = ( f(t)kz(t— S)¢1

Proof:
let @d € [0,1) with @ + A = 1 and (¢1, ¢2), (1, d) € B(tp). Then

a1, ¢2) + A1, h2) = (a1 + A1, ads + 1))

Also, ¢1, b1, ¢, 2 € FA,, and , A are non-negative and they do not vanish simultaneously,them ag;, Ad|, ads, A,
are continuous on [y, +00), non-negative, strictly positive on to and bounded.

Thus a¢ + A, ap, + Ad, belong to FA,,. from where (a¢, + A1, ap, + Ady) € B(ty) and therefore B(ty)

s convex.
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On the other hand,
i.) G(t, ty, @) is well defined since

To

f Okt = 62(5)ds < cardang f kit - 5)ds

0o —00

+00
= cudom f k(o) dor
=1y

+00
< cudom f k(o) dor
0
=< cyom <+

similarly
10
| A0kt = 9619ds < it < oo
ii.) G(t, 1y, ®) in continuous at each #y < f, being that if we consider the interval [fy, d] such that fy < f < d.k
then each component

0]

G(1, 10, @) = G1(1, 10, (¢1, $2)) =f c(Dki (1 = $)pa(s) ds

—00
and

Galt, 1y, ) = f Fkatt - $)01(s) ds

is continuous in 7. to see this look at Theorem 14-21,Page 421 [4]. Now, the integral

f ekt - )a(s) ds

00

can be written as .
f c(Oki(t+ s)pa(—s)ds
1
Now

+00

f+ooc(t)¢2(s)k1(t +s5)ds < CM(DZMf ki(t+ s)ds

fo —l

+00
ScM(DZMf k(o) do

-ty

< emPomk

Also, given € > 0 there exists R > 0 such that

b +00
‘f kl(O')dO'—f k(o) do

<

CM(DZM +1
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Vb > Randt € [ty,d]letb > R —ty, then 1y < t < d implies that 7y + b < t + b < d + b which also implies
that R <t+ b < d + b son, given € > 0 there exists R > 0 such that for b > R — ¢,

+00

f c(O)Pr()k1(t + s)ds < ey Doy f ki(t+s)ds
b b

+00
= CM(DZMf k](O’)dO’
t+b

< CM(DzMS <eg&

for every ¢t € [ty,d] Therefore, fbmc(t)(ﬁg(s)kl(t + s5)ds converges uniformly on [#y,d]. In consequence
G (1, ty, D) is continuous in 7 (we say even more in [#y, d]). By the same token G, (z, tp, @) is continuous in 7.
Therefore G(t, 1y, @) is continuous for every 7 > fy.

2. Existence and Uniqueness Theorem

An existence and theorem or equation (2) is given.
In fact, given a real number and an initial function ® € B(zy) we look for a continuous solution x(¢) =
x(t, ty, ®) that satisfies (2) for every t € [#, fp + 3) for some 8 > 0 and x(¢) = ¢(¢) for all ¢ < ¢,.
let us observe that if x(¢) is a solution, that x() is also a solution of the integral equation.

0 = {¢(l) ifr <t O

f@® ift € [to, 1o + Bl

where
S@) = @) + f [A(s, x(5)) — A(x(s)G(s, to, P)] ds — f f [A(x(s5))g(s, T, x(7))]dds

Conversely, every function x(#) which satisfies (I) is necessarily a solution of the system (2) with initial
function ®@. So the problem of existence of solutions of equation (2) is equivalent to the problem of existence
of ().

The right hand side of (I) define a continuous function in (—oo, fy + ) for every ® € B(t), t > 0 and

(1) = {¢(t) ift <1t

w(x,xp) iffg<t<ty+p

even more, it is continuously differentiable on [y, fp + ].
From that point of view, (I) allows us to define an operator P which send the continuous function

0 = {¢(t) ift <t

wlxy,x) iftg<t<ty+pB

to the continuous function given by the right hand side of (I).
In particular, if x(¢) = x(z, o, @) is a solution of I, then,

(Px)(1) = x(1)
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Then, the solutions to (I), or it is equivalent in the original problem (2) with initial condition (#y, @), appear
to be the fixed points of the operator P.

Now, to determinate the existence and uniqueness of a fixed point we will use the principle of the contraction
applications.

For that, we need to define P on a subset S of the continuous function from (—co, ty + 8] — R2 to which
we impose certain conditions such that it is a complete metric space, P is a map from S to itself and P and
P be a contraction.

Given problem (2) with the initial condition ® € B(%) , ty > 0, and positive constants M and 3, we consider
the set S those function x which satisfies the following conditions:

a.) x € C[(~0, fo + B, R?]

b.) x(t) = o) if t < 1

c.) |lx(t1) — x(8)ll < M|t; — 1| for 11, 1, € [to, to + ]
d.) [lx() = Do)l < 1 for ¢ € [1o, 1o + Sl

and then on S we define the function.

p(x1,x2) = max |lx(@) — x0)ll
t€lto,to+5)

So (S, p) is a complete metric space, and if M and 3 are selected appropriately, P will be a contraction from
S to itself.

Lemma 4. There exist M and B such that ® € B(ty), to < 0 such that the operator P act from (S, p) to itself
and is a contraction

Proof:
Let 31, be a positive real number less than 1, now because of the continuity of the functions /4, g, G and the
compactness of the interval [fy, o + 8] and the sets

C1 = {(t, ) € RXR?/||x(t) = Dto)ll < 1,7 € [t0, 10 + B}

Cr ={(t,5,x) e RXxRxR?/|Ix(t) - Do) < 1,10 < s <1 <19+ 1}

there exists positive constants M,M, and M3 such that

[|A(t, x)|| < M, forall (¢,x) € Cy (®)]
IG(t, 19, ®)|| < M, forall t€ [ty 19+ pB] (6)
llg(s, 7, X)|| < M5 forall (s,7,x)€C;s @)
We choose M € R* such that
M + (MaM3)(1 + la(@(w)ll) < M (3)

If we apply the local Lipschitz condition for A(z, x) at the point (#y, @(¢p)) to the set
Cs = {(t,x) e RXR*/|Ix(t) = Do)l < 1,1t — 1] < 1)
we obtain that there exist L; € R* such that if (¢, x) and (¢, X) € C3 then

lA(t, x) = h(z, X)I| < Li|x — X| €))
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Similarly, using the Lipschitz condition for g in the set
Ci=1{(t,5,x) ERXxRXR?/|Ix|| <T,-T<s<t<T)
where T = méax{ty + B, 1 + ||®(t)||}, there exist an L, € R* such that if (¢, s, x), (¢, 5, X) € C4 then

llg(z, s, x) — g(t, 5, Ol < Lo|x — x| (10

Let L = max{L;, L,} and pick 8 € R such that

1

B<pi and B < 2M + 2L + L||®(to)|| "

1
The condition 0 < 8 < 8; < 1 implies that 8> < 8. The second condition implies that 8 < ”
If we consider the space (S, p) with M by (8) and g given by (11) then for x € § we have that.

llx(s) = @)l < 1

for every s € [to, to + 3]
therefore
(s,x(s)) € C; forevery s € [ty,t+f] (12)

It is also easy to verify thatif 7y < 7 < s <t <ty + B then (s, T, x(1)) € C, and the

Billg(s, , x(D|| < M3 for th<T<s<t<ty+p (13)

Also, if x, ¥ € S then (s, x(s)) and (s, X(s)) € C3 for every s € [ty, tp + 5] and
(s, 7, x(1), (5, T, X(1)) € Cyif ty < T <5<t <1tr+ 0.
So we get that

lh(s, x(5)) = h(s, (s)II < Llx(s) = X(s)] < Lp(x, X) s € [to, 10 + B (14)
Andeverytg < T<s<t<ty+f3
llg(s, 7, x(7)) — g(s, 7, X(T)II < Llx(s) — X(s)| < Lp(x, X). (15)

The technique we will use in the next proof is similar to that of Theorem 3.3.5 Page 193 [3].

2.1. The Main Theorem

Theorem 1. (Existence and Uniqueness) Let ty > 0 and ® € B(ty). Then there exist a unique solution
x(1) = x(t,ty, D) of (2) defined in the interval [ty,ty + B] for some B > 0 and x(t,ty, p) = D(t) for x < 1.
Proof:

Consider the metric space (S, p) given above, with M as in (8) and B8 as in (11).

Let the operator P, define for x € S by

() ift>1
(Px)(1) = { (1) + [Th(s. x(5)) ~ AG()G(s. t0. )] ds
~ J! [TAGs)8(5, T, 20l if1 € lto.to +f]
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from (5), (6), (8), (12) and (13) P is a mapping from S to S and

IPx(0) - D(to)l| < f s, x(s))l ds + f AGINIGCs, o, D) ds

fIIA(X(S))IIf llg(s, 7, x())lldrds

<M1fds+f||x(s)||M2ds+f||x(s)||f —d‘rds

<My (1= 1) + (1 + [ Do) DMa(t — 10)
2
1+ oG 22
A
M; B?

<M\B + (1 + || D(10)lNM2f + (1 + ||®(to)||)—ﬂ—

Then

1Px(2) — ©(to)ll <M1 + (1 + [|D(10))M2p + (1 + [|D(t0)IDM 33
=(M; + (1 +[|Q@)|D(M2 + M3))B < MB < 1

Similar, for t1,t, € [ty, ty + Bl with t; < t, we have that

II(PX)(ll)—(PX)(lz)IISf IIh(s,X(S))IIdS+f NAG(ING (s, 20, D)l ds
+ f A f llg(s, 7, x(7))lldrds

153 !
Sle ds+(1+||(I)(to)||)M2fds
n

4]
8 S M
+f(1+||d)(t0)||)f 23 drds
) fo ﬁ

<Mi(t, — t1) + (1 + ||D(tp)|)M2(t: — 11)

(1t ||®(fo)||)% l&(s ~ 1) ds

<M(tp) —t))+ (1 + ||(i)(t())||)M(t2 - 1)

(1t ||(D(to)||)%(l2 1)

My + (1 +[OUD(M: + M3)(ta — 17) < M(ts — 1)

So Px satisfies the conditions (a),(b),(c), and (d), that is to say that (Px) € S Finally, let x,x € S and
t € [to, to + B] ,now,from (5), (6), (12), (13) and (14) if we let
0 = ||[(Px)(t) — (PX)(0)|| we have that

0< f (s, x(5)) — hs, KDl ds + f HAGK(s) = SDIGCs, to, D] ds

+ f f IA(X(5))8(s, 7, X(1)) — A(x(5))g(s, T, x(7))l|dTdls
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Then
QSLlfllx(S)—J‘C(S)IIdS+fllx(S)—fc(S)Ileds

al t [ 1At 750 - APt x0)

A5, X) ~ A5, KOs

<(Li + M) f ) - Kol ds + f t f A&, 7 5(0) — 05, 7, X))
+(A(X(s)) — AZX(S))g(s, T, x(T))IIdeso 0

<Ly + M) f () — X(s)ll ds + f f IR - x(D)lldrds
. f f lx(s)) = X)lllgCs. 7. x()lldrds

<(Ly + Ma)(1t = to)p(x, X) + f(l +[|@(t0)IDp(x, X)(s — to) ds

fo
! S M
+f fp(x,)‘c)—3d7ds
to to ﬂl

M t
<(Ly + M)Bp(x, %) + B(L + [|D(t0)|Dp(x, X)(1 = 10) + p(x, 56)’8—13 f (s —to)ds

M
<(Ly + Ma)Bo(x, %) + B(1 + |0(to)IDp(x, ) + plx, )'C)ﬁ—fﬂz
<((Ly + M2)B + B(1 + [|D(1)ll) + BM3)p(x, %) < kp(x, X)

which means that
I(Px)(2) = (PX)DI| < kp(x, X)
fortety,to +Bland x,x € S
So p(Px, Px) < p(x, X) for some B > 0 chosen in such a way that
k= (L1 + M)+ +[D0)I) + M3)B <1

Proving that there exist § > 0 such that Px is a contraction [ty, ty + B] and in consequence there exist a
unique x € S with Px = x
Since the fixed points of P are the solutions of (2) the conclusion follows.

Conclusions

(1) This theorem of existence and uniqueness illustrate a classical method to assure the existence of solu-
tions of a differential equation, and in this case with infinite delay , but this technique can be extended
to some others type o differential equations.

(2) The existence of the solution in a local result in the interval [#y, fp + ] for some S > 0. Now using
traditional methods we can extend the solution to [#g, +0).
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