MATRICES RECTANGULARES INVERTIBLES

  • Germán E. Gómez A.
  • Oswaldo Dede Mejía Universidad del Atlántico
Palabras clave: Rings with identity element, invertible matrices over a ring, invariant basis number, congruences. Anillos con elemento identidad, matrices invertibles sobre un anillo, n´umero de base invariante, congruencias.

Resumen

En el presente trabajo, se estudian condiciones de invertibilidad de matrices rectangulares sobre R vía relaciones de congruencia en N, estipulando que anillos tienen número de base invariante.

 

Visitas al artículo

89

Descargas

La descarga de datos todavía no está disponible.

Referencias

A. J. Berrick and M. E. Keating, Rectangular Invertible Matrices.

M. F. Atiyah and I. G. MacDonald, Introduction to Commutative

Algebra, Addison-Wesley, Reading, Mass. 1969.

G. M. Bergman, Coproducts and some universal ring constructions, Trans. Amer. Math. Soc. 200 (1977), 33-88.

P. M. Cohn, Some remarks on the invariant basis property, Topology 5 (1966), 215-228.

P. M. Cohn, Algebra II, Wiley & Sons, Chichester, 1977.

P. M. Cohn, Universal Algebra, Reidel, Dordrecht, 1981.

P. M. Cohn, Algebra I, Wiley & Sons, Chichester, 1982.

K. Goodearl, P. Menal, and J. Moncasi, Free and residually artinian regular rings, J. Algebra 156 (1993), 407-432.

J. M. Howie, An Introduction to Semigroup Theory, London Math. Soc. Monograph 7, Academic Press, London, 1976.

W. van der Kallen, Injective stability for K2, Lecture Notes in Math. 551, Springer, Berlin, 1976, pp.77-154.

W. G. Leavitt, Modules without invariant basis number, Proc. Amer. Math. Soc. 8 (1957), 322-328.

W. G. Leavitt, The module type of a ring, Trans. Amer.

Math. Soc. 103 (1962), 113-130.

W. G. Leavitt, The module type of a homomorphic image, Duke Math. J. 32 (1965), 305-311.

L. N. Vaserstein , Stable ranks of rings and dimensionality

of topological spaces, Funct. Anal. And Appl. 5 (1971), 102-110.

Lous H. Rowen, Ring Theory, Volume I, 1.3 p. 61.

Publicado
2014-12-12