Basic and Classic properties in the \mathcal{B}_F-spaces

Propiedades Básicas y Clásicas en los \mathcal{B}_F-espacios

Adalberto García-Máynez
Instituto de Matemáticas; Universidad Nacional Autónoma de México; Area de la Investigación Científica Circuito Exterior, Ciudad Universitaria, Coyocacán, 04510, México, D. F.
agmaynez@matem.unam.mx

Margarita Gary
Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Colombia
margaritagy@mail.uniatlantico.edu.co

Adolfo Pimienta Acosta
Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolivar, Barranquilla, Colombia
adolfo.pimienta@unisimonbolivar.edu.co

Abstract

\mathcal{B}_F-spaces determine a class between the class of pseudocompact spaces and the class of k_R-pseudocompact spaces. We present an alternative proof of the theorem 3.5 enunciated in [3] and describe their main properties.

Keywords: k_R-space, \mathcal{B}_F-spaces, pseudocompact spaces.

1. Introduction

The class of \mathcal{B}_F-spaces lies between the class of pseudocompact spaces and the class of pseudocompact k_R-spaces. The definition of \mathcal{B}_F-spaces 2.2 was introduced by Frolik in [(3), 3.5.1], where he proves that
such spaces are productively pseudocompact. The class was later studied by Noble [7], who doesn’t give it
a name but denotes it by \(\mathfrak{B}^* \) (\(\mathfrak{B} \) is used for the class of productively pseudocompact spaces by both Frolík
and Noble.)

It has several attractive properties like the following:

a) \(\mathfrak{B}_F \)-spaces are productively pseudocompact;

b) \(\mathfrak{B}_F \)-spaces are closed under finite products;

c) Every product of \(\mathfrak{B}_F \)-spaces is pseudocompact;

d) \(\mathfrak{B}_F \)-spaces are closed under continuous images;

e) Every space containing a dense \(\mathfrak{B}_F \)-subspace is itself \(\mathfrak{B}_F \)-spaces

We think all of these facts prove that this is a challenging area in point set topology.

2. Preliminary

The terminology of R. Engelking [2] and J. Kelley [6], General Topology, is used throughout.
All spaces consider in this paper are Tychonoff, i.e., completely regular and Hausdorff.

Definition 2.1. A space \(X \) is said to be :

i) pseudocompact (see Hewitt [4]) if (and only if) every real continuous function on \(X \) is bounded,
or equivalently, if every real continuous bounded function assumes its bounds. A completely regular
space \(X \) is pseudocompact if and only if every locally finite family of its open subsets is finite, or
equivalently, if there exists no locally finite sequence of its non-void open subsets.

ii) \(k_R \)-space(see Noble [7]) when every real-valued function with domain \(X \) is continuous if its restriction
to each compact subset of \(X \) is continuous.

Recall that a space \(X \) is called a \(k \)-space provided each subset of \(X \) which meets every compact set in
a relatively closed set is itself closed, and that associated with each space \(X \) there is a unique \(k \)-space \(kX \)
having the same underlying set and the same compact sets as \(X \) (see [7]).

The following definition is based on Frolík’s condition [[3], 3.5.1] which turns out to be equivalent. \(\mathfrak{B}_F \)-spaces.

Definition 2.2. A space \(X \) is a \(\mathfrak{B}_F \)-space if for every sequence \(U_1, U_2, \ldots \) of non-empty open sets, there
exists a compact set \(K \subseteq X \) such that \(K \cap U_n \neq \emptyset \) for infinitely many indices \(n \).

We obtain an equivalent definition if we suppose that the open sets \(U_n \) are mutually disjoint. To prove
this fact, we need a Lemma.

Lemma 2.3. (see also [7]) Let \(U_1, U_2, \ldots \) be a point finite sequence of non-empty open sets in a space \(X \).
Then there exists a sequence \(T_1, T_2, \ldots \) of mutually disjoint non-empty open sets in \(X \) and an increasing
sequence \(n_0 = 0 < n_1 < n_2 \cdots \) such that \(T_i \subseteq \bigcup_{j=n_{i-1}+1}^{n_i} U_j \) for each \(i \in \omega \)

\(^1\) (The space \(kX \) is formed by adjoining to the topology on \(X \) all those subsets whose complements meet each compact set in a
relatively closed set.) When \(X \) is a \(T_1 \)-space, \(kX \) is also a \(T_1 \)-space; in fact, the identity map from \(kX \) to \(X \) is always continuous.
We prove now the equivalence of the two definitions. Every Lemma 2.7. Proposition 2.6.

subset of set U. We may suppose that the sequence Definition 2.5.

For each $i \in \omega$, a point $x_i \in U_{n_i} \cup \bigcup_{j \neq i} U_j$. Choose an open set W_1 such that $x_1 \in W_1 \subseteq U_{n_1}$. Since $x_2 \notin W_1$, there exists an open set W_2 such that $x_2 \in W_2 \subseteq U_{n_2} \setminus W_1$. Now, since $x_3 \notin W_1 \cup W_2$, there exists an open set W_3 such that $x_3 \in W_3 \subseteq U_{n_3} \setminus (W_1 \cup W_2)$. Continuing this process, we may construct a sequence W_1, W_2, \ldots of mutually disjoint non-empty open sets such that $W_i \subseteq U_{n_i}$ for each $i \in \omega$ and we are thru in this case. Suppose then that no subsequence of U_1, U_2, \ldots is irreducible. Therefore, we may find integers $n_0 = 0 < n_1 < n_2 < \cdots$ such that if $W_i = \bigcup\{U_j: n_{i-1} < j \leq n_i\}$, then $W_1 \supsetneq W_2 \supsetneq W_3 \supsetneq \cdots$. If a subsequence of the W_i's is made of clopen sets, say W_{k_1}, W_{k_2}, \ldots the sequence $\{W_{k_i} - W_{k_{i-1}}: i = 1, 2, \ldots\}$ satisfies our requirements. If only finitely many of the W_i’s are clopen, we may remove them and suppose, with no loss of generality, that $W_i \neq W_{i-1}$ for each $i \in \omega$. If for some strictly increasing sequence $0 < n_1 < n_2 < \cdots$ we have $W_{n_i} - W_{n_{i-1}} \neq \emptyset$ for each $i \in \omega$, we define $T_i = W_{n_i} - W_{n_{i-1}}$ and the sequence of open sets T_1, T_2, \ldots satisfies our requirements. If for only finitely many indices $i \in \omega$, we have $W_i - W_{i-1} \neq \emptyset$, we may remove the corresponding W_i and suppose then that W_{i+1} is dense in W_i for each $i \in \omega$. Take a point $x_1 \in W_1 \setminus W_2$ and let T_1 be an open set such that $x_1 \in T_1 \subseteq T_2 \subseteq W_2$. The set $T_1 \cap W_2$ is then open and infinite. Select two different points $x_2, p_2 \in T_1 \cap W_2$ and let T_2 be an open set such that $x_2 \in T_2 \subseteq T_2' \subseteq T_1 \cap (W_2 - \{p_2\})$. Take now two different points $x_3, p_3 \in T_2 \cap W_3$ and let T_3 be an open set such that $x_3 \in T_3 \subseteq T_3' \subseteq T_2 \cap (W_3 - \{p_3\})$. It is clear now how to continue this process indefinitely. The required sequence is now $(T_i - T_{i-1}: i \in \omega)$. We prove now the equivalence of the two definitions.

Proposition 2.4. In an arbitrary space X, the following two conditions are equivalent:

1) X is a \mathcal{S}_F-space.

2) For every open sequence W_1, W_2, \ldots of mutually disjoint non-empty open subsets of X, there exists a compact set $L \subseteq X$ such that $L \cap W_n \neq \emptyset$ for infinitely many indices n.

Proof. We just have to prove that 2) \Rightarrow 1). Let U_1, U_2, \ldots be a sequence on non-empty open sets of X. We may suppose that the sequence U_1, U_2, \ldots is point finite, because otherwise we could take the compact set K as a singleton. By (2.3), there exists a sequence T_1, T_2, \ldots of mutually disjoint non-empty open sets in X and a strictly increasing sequence $n_0 = 0 < n_1 < n_2 < \cdots$ such that $T_i \subseteq \bigcup_{j=n_{i-1}+1}^{n_i} U_j$ for each $i \in \omega$. By property 2), there exists a compact set $K \subseteq X$ such that $K \cap T_i \neq \emptyset$ for infinitely many indices $i \in \omega$. Hence, $K \cap U_j \neq \emptyset$ for infinitely many indices $j \in \omega$ and the proof is complete.

Definition 2.5. A subset A of a space X is C-discrete (respect to X) if for each $x \in A$ we may find an open set U_x containing x and such that the family $\{U_x: x \in A\}$ is discrete (respect to X).

A well known characterization of pseudocompactness is the following:

Proposition 2.6. [see [3]] A space X is pseudocompact if and only if every C-discrete subset of X is finite.

(2.6) implies immediately:

Lemma 2.7. Every \mathcal{S}_F-space X is pseudocompact.

Proof. Suppose, on the contrary, there exists an infinite discrete sequence U_1, U_2, \ldots of non-empty open subset of X. Let $K \subseteq X$ be a compact set such that $K \cap U_n \neq \emptyset$ for every $n \in L$, where $L \subseteq \omega$ and $|L| = \omega$. For each $n \in L$, select a point $x_n \in K \cap U_n$. Then the set $A = \{x_n: n \in L\}$ is an infinite C-discrete subset of K, contradicting (2.6).
We call point \(x \) in \(X \) is a \(k \)-point if each open subset of \(kX \) which contains \(x \) is a neighborhood of \(x \). Clearly \(X \) is a \(k \)-space if and only if each point in \(X \) is a \(k \)-point. Recall that a point \(x \) in \(X \) is called a \(P \)-point if each \(G_\delta \) containing \(x \) is a neighborhood of \(x \). We call point \(x \) in \(X \) is a \(k_R \)-point if each real-valued function on \(X \) which is continuous on compact sets is continuous at \(x \) (see [7]).

We have the following result.

Proposition 2.8. (see [7], theorem 2.2) If \(X \) is pseudocompact and each point of \(X \) is either a \(P \)-point or a \(k_R \)-point, then \(X \) is a \(\mathcal{B}_F \)-space.

Proof. Suppose \(X \) is not \(\mathcal{B}_F \)-space, let \(\{U_n\} \) be a countable collection of disjoint open sets only finitely many of which meet any single compact set and construct and bounded function \(f \) (see [[7], theorem 2.1]). Since \(f \) is continuous on compact sets it is continuous at each \(k_R \)-point of \(X \), and \(f \) is continuous at \(P \)-point in \(X \) \(\setminus \bigcup_n U_n \) since it is zero on a neighborhood of such that a point. Finally, since \(f|U_n = f_n \), \(f \) is continuous on \(\bigcup_n U_n \) and therefore \(f \) is continuous. Since \(X \) is pseudocompact, this is a contradiction so \(X \) is a \(\mathcal{B}_F \)-space.

The following result is not a new result (Noble uses this fact in the proof of [[7], Theorem 2.1]) but the author explicitly formulated and proved.

Proposition 2.9. Let \(\varphi : X \rightarrow Y \) be a continuous map of the \(\mathcal{B}_F \)-space \(X \) onto the space \(Y \). Then \(Y \) is a \(\mathcal{B}_F \)-space.

Proof. Let \(V_1, V_2, \ldots \) be a sequence of non-empty open sets in \(Y \). For each \(n \in \omega \), define \(U_n = \varphi^{-1}(V_n) \). By the continuity of \(\varphi \), each \(U_n \) is open in \(X \). Since \(X \) is a \(\mathcal{B}_F \)-space, there exists a compact set \(L \subseteq X \) such that \(L \cap U_n \neq \emptyset \) for infinitely many indices \(n \in \omega \). Therefore, \(\varphi(L) \) is compact and \(\varphi(L) \cap V_n \neq \emptyset \) for infinitely many indices \(n \in \omega \), i.e. \(Y \) is a \(\mathcal{B}_F \)-spaces.

We have also the following result:

Theorem 2.10. If a space \(X \) has a dense subspace \(Y \) which is a \(\mathcal{B}_F \)-space, then \(X \) itself is a \(\mathcal{B}_F \)-space.

Proof. Let \(V_1, V_2, \ldots \) be a sequence of non-empty open sets in \(X \). For each \(n \in \omega \), define \(U_n = Y \cap V_n \). Then \(U_n \) is an open non-empty subset of \(Y \). By hypothesis, there exists a compact set \(K \subseteq Y \) such that \(K \cap U_n \neq \emptyset \) for infinitely many indices \(n \in \omega \). Hence, \(K \cap V_n \neq \emptyset \) for infinitely many indices and the proof is complete.

We finish this preliminary section proving the following result:

Theorem 2.11. Every finite product of \(\mathcal{B}_F \)-spaces is a \(\mathcal{B}_F \)-space.

Proof. It is enough to prove that if \(X, Y \) are \(\mathcal{B}_F \)-spaces, then \(X \times Y \) is also \(\mathcal{B}_F \)-space. Let \(W_s = U_s \times V_s \) be non-empty basic open sets in \(X \times Y \). Let \(K_1 \subseteq X \) be a compact set in \(X \) such that \(K_1 \cap U_s \neq \emptyset \) for every \(s \in L_1 \), where \(L_1 \subseteq \omega \) and \(|L_1| = \omega \). Let now \(K_2 \subseteq Y \) be a compact set in \(Y \) such that \(K_2 \cap V_s \neq \emptyset \) for every \(s \in L_2 \), with \(L_2 \subseteq L_1 \), \(|L_2| = \omega \). Therefore \(K = K_1 \times K_2 \) is compact and satisfies \(K \cap W_s \neq \emptyset \) for every \(s \in L_2 \). The proof is then complete.

3. Main results.

In this section we prove the two properties of \(\mathcal{B}_F \)-spaces mentioned in the introduction which were not proved in the last section.

In the following result we present an alternative proof of the theorem 3.5 enunciated in [3].
Theorem 3.1. Let be a \(\mathcal{B}_F \)-space and let \(Y \) be pseudocompact. Then \(X \times Y \) is pseudocompact.

Proof. Suppose, on the contrary, that \(X \times Y \) is not pseudocompact. By (2.6), there exists an infinite discrete family \(U_1, U_2, \ldots \) of non-empty open sets in \(X \times Y \). Let \(\pi: X \times Y \to X \) be the projection onto the first factor. There exists an index \(n_1 \in \omega, n_1 \geq 2 \), such that \(\pi(U_1) \cap \pi(U_2) \cap \cdots \cap \pi(U_{n_1}) = \emptyset \); otherwise, there would exist a point \(z \in \bigcap_{n=1}^{\infty} \pi(U_n) \) and the set \(\{z\} \times Y \) would be a pseudocompact subset of \(X \times Y \) which would intersect every \(U_n \), a fact which, by (2.6), cannot occur. Pick a minimum \(n_1 \in \omega \). Therefore, \(\bigcap_{n=1}^{n_1-1} \pi(U_n) \neq \emptyset \). Reasoning in a similar way, we may find a minimum integer \(n_2 \geq n_1 + 2 \) such that \(\pi(U_{n_1+1}) \cap \cdots \cap \pi(U_{n_2}) = \emptyset \) and continue this process indefinitely. For each \(k \in \omega \), \(W_k = \pi(U_{n_1+1}) \cap \cdots \cap \pi(U_{n_k}) \) is a non-empty open subset of \(X \). Since \(X \) is a \(\mathcal{B}_F \)-space, there exists a compact set \(K \subseteq X \) such that \(K \cap W_k \neq \emptyset \) for infinitely many indices \(k \). But then \(K \times Y \) is a pseudocompact subset of \(X \times Y \) which intersects \(U_n \) for infinitely many indices \(n \in \omega \), and this is a contradiction.

Theorem 3.2. [See [7], Theorem 3.4] Every topological product of \(\mathcal{B}_F \)-spaces is pseudocompact.

Proof. Taking only basic open sets in the product, it is enough to consider the case of countably many factors. Suppose \(X = X_1 \times X_2 \times \cdots \) is a sequence of \(\mathcal{B}_F \)-spaces and let \(X = \prod_{n=1}^{\infty} X_n \) be its topological product. Let \(W_n = \prod_{n=1}^{\infty} U_n^{(s)} \) be a box in \(X \) with non-empty open factors \(U_n^{(s)} \subseteq X_n \) and \(X_n = U_n^{(s)} \) for almost every \(n \). We shall prove that the sequence \(\{W_n: s \in \omega\} \) cannot be discrete. Assuming it is discrete, we shall reach a contradiction. Let \(K_1 \subseteq X_1 \) be a compact set such that \(K_1 \cap U_1^{(s)} \neq \emptyset \) for every \(s \in L_1 \subseteq \omega \), with \(|L_1| = \omega \). Let \(K_2 \subseteq X_2 \) be a compact set such that \(K_2 \cap U_2^{(s)} \neq \emptyset \) for every \(s \in L_2 \subseteq L_1 \), with \(|L_2| = \omega \). Continuing this process indefinitely, for each \(j \in \omega \) we can find a compact set \(K_j \subseteq X_j \) and an infinite subset \(L_j \) of \(\omega \) such that \(K_j \cap U_j^{(s)} \neq \emptyset \) for every \(s \in L_j \). We may suppose also that \(L_1 \supseteq L_2 \supseteq \cdots \) and let \(K = \prod_{j=1}^{\infty} K_j \). The set \(K \) is compact by the Tychonoff product theorem. For each \(x \in K \), we may find a basic open box \(V_x \subseteq X \) such that \(V_x \cap W_n \neq \emptyset \) for at most one value of \(n \). Since \(K \) is compact, we may find a finite union \(V \) of the basic sets \(V_x \) such that \(V \supseteq K \) and \(V \cap W_n \neq \emptyset \) for at most finitely many indices \(n \in \omega \). The open set \(V \) may be expressed in the form:

\[
V = L \times \prod_{j=t+1}^{\infty} X_j
\]

where \(t \in \omega \) and \(L \) is an open set in \(X_1 \times X_2 \times \cdots \times X_t \), which contains \(K_1 \times K_2 \times \cdots \times K_t \). Indeed there is \(t \) such that

\[
V \supseteq \prod_{j=1}^{t} K_j \times \prod_{j=t+1}^{\infty} X_j.
\]

Hence, for \(s \in L_t \) we have

\[
V \cap W_s \supseteq \prod_{j=1}^{t} (K_j \cap U_j^{(s)}) \times \prod_{j=t+1}^{\infty} U_j^{(s)} \neq \emptyset
\]

This contradiction proves that the sequence \(W_1, W_2, \ldots \) cannot be discrete and hence \(X \) is pseudocompact.

We finish this paper with a short proof of a classic result (see [[7], Construction 2.3]):

Theorem 3.3. Every space \(X \) is homeomorphic to a closed subspace of a pseudocompact space \(Y \).

Proof. We can obviously assume that \(X \) is not pseudocompact. For every \(z \in \beta X - X \), we define \(E_z = \beta X - \{z\} \). We know \(E_z \) is locally compact and pseudocompact, and hence, each \(E_z \) is a \(\mathcal{B}_F \)-space. Taking the diagonal immersion \(\varphi \) of \(X \) into the product \(Y = \prod_{x \in X} E_z \), we know \(\varphi \) is a homeomorphism of \(X \) onto a closed subspace of \(Y \). But by (2.8) and (3.2), \(Y \) is pseudocompact.

54
In [[1], example 3.4], J. L. Blasco gives an example of a \mathcal{B}_F-space which is not a pseudocompact k_R-space (see also [5]).

We finish this note stating the following question are open:

Question 1. Does there exist a non \mathcal{B}_F-space X such that $X \times Y$ is pseudocompact for every pseudocompact space Y?

Question 2. Does every \mathcal{B}_F-space contain a dense subspace which is pseudocompact and k_R-space?

Question 3. Is there a \mathcal{B}_F-space Y which cannot be expressed as the continuous image of a pseudocompact k_R-space?

Referencias

