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1. Introduction

The study of convex functions has been of interest for mathematical analysis based on the properties that
are deduced from this concept. Due to generalization requirements of the convexity concept to obtain new
applications, in the last years great efforts have been made in the study and investigation of this topic.

A function f : I — R is said to be convex if for all x,y € [ and ¢ € [0, 1] the inequality

Jax+ 1 =0y) < 1f(x)+ A =0Df )

holds.

Numerous works of investigation have been realized extending results on inequalities for convex func-
tions towards others much more generalized, using new concepts such as E—convex ([34]), quasi-convex
([26]), s—convex ([3]), logarithmically convex ([1]), m—convex ([21]), h—convex ([32]), p—convex ([9]),
strongly convex ([13], etc.

A compendium about the history of inequality of Hermite Hadamard can be found in an work of Miri-
novic and Lackovic in [18]. The formulation of this result is as follows:

(Hermite-Hadamard Inequality). Let f : I — R be a convex fucntion, and a, b € I with a < b, then

b
f(a;b)sﬁfaf(x)dxsﬂa);f(b)_

The inequality of Hermite Hadamard has become a very useful tool in the Theory of Probability and Opti-
mization (See [14])

The study on convex stochastic processes began in 1974 when B. Nagy in [19], applied a characterization
of measurable stochastic processes to solving a generalization of the (additive) Cauchy functional equation.
In 1980 Nikodem [20] considered convex stochastic processes. In 1995 Skowronski [30] obtained some furt-
her results on convex stochastic processes, which generalize some known properties of convex functions. In
the year 2014, E. Set et. al. in [25] investigated Hermite-Hadamard type inequalities for stochastic processes
in the second sense. For other results related to stochastic processes see [4],[7],[16],[28] , [27], where further
references are given.

Fractional calculus has been widely used in the context of inequalities and generalized convexity as
observed in the works of Sarikaya et.al. [24] and Liu et.al. [15].

2. Preliminaries

In this section we present some concepts, examples and properties regarding (m, h;, hy) — convexity, the
calculus for stochastic processes, and some notions of Riemann-Liouville fractional integral as a theoretical
framework for the development of this work.

2.1. About (m, hy, hy) —convexity.
In [2], Alomari M. , Darus M. and Dragomir S.S. introduced the following generalized concept.

Definition 2.1. Let 0 < s < 1. The function f : [0, 00) — R is called a s—convex function in second sense if
fax+ A =0y) <2 f()+ A =) (M
holds for all x,y € [0, ) and t € [0, 1].

14
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A. Barani,S. Barani and S.S.Dragomir, in [5], about Hermite-Hadamard inequalities, introduced the fo-
llowing definition of P—convex functions.

Definition 2.2. We say that a function f : I — Ris a P—convex on I or f € P(I) if f is non negative and for
all x,y € I and t € [0, 1] we have

Sax+ (A =0y < f(x)+ f() )
W. Liu, W. Wen and J. Park in [15] introduced the concept of M T —convex function.

Definition 2.3. A function f : I ¢ R — R is said to be MT —convex function on I , if it is non negative and
forall x,y € I and t € (0, 1) satisfies the following inequality

Vi V1-1¢
2\/1—tf(x)Jr 24t

S. Varosanec in [32], introduced the A—convex functions.

Jlax+ (1 =0y < J. 3

Definition 2.4. Let h : J — R be a non negative function, h # 0, with (0, 1) C J and J is an interval of R. A
function f : I C R — R, where I is an interval of R, is said to be h—convex function if for all x,y € I and
t € [0, 1] the following inequality holds

fx+ (1 =0y) < (O f(x) + h(1 =D f (). “
G. Toader introduced in [31] the concept of m—convex function.
Definition 2.5.  For f : [0,b] » R,b > 0andm € (0,1], if
Jx +m(l = 1)y) <tf(x) + m(1 =0 f(y) &)
is valid for all x,y € [0,b] and t € [0, 1], then we say that f is an m—convex function.
In [33], B. Xi and F. Qi., introduced the following definition.

Definition 2.6. Let hy,hy, : [0,1] - R and m € (0,1] . A function f : [0,00) — R is said to be
(m, hy, hy) —convex function if the inequality

Sx+m(1 - 0y) < (@) f(x) + mhay (D)
holds for all x,y € I and t € [0, 1].
Remark 2.7. If we choose m = 1 and hy(t) = t,hy(t) = 1 — t, for t € [0, 1] we obtain the classical definition

of convex function. Also, if m = 1 and for a fixed s € (0, 1]: hy(t) = t*, hy(t) = (1 — )* for t € [0, 1], we have
Definition 2.1. If m = 1 and h,(t) = hy(t) = 1, for t € [0, 1] we obtain Definition 2.2.

15
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2.2.  About Calculus of Stochastic Processes

The following notions corresponds to Stochastic Process and convex Stochastic Process and its genera-
lizations.

Definition 2.8. Let (Q, A, P) be an arbitrary probability space. A function X : Q — R is called a random
variable if it is A-measurable. Let (Q, A, P) be an arbitrary probability space and let T C R be time. A
collection of random variable X(t,w),t € T with values in R is called a stochastic processes.

1. If X(t,w) takes values in S = R? if is called vector-valued stochastic process.
2. Ifthe time T can be a discrete subset of R, then X(t,w) is called a discrete time stochastic process.
3. Ifthe time T is an interval, R or R, it is called a stochastic process with continuous time.

Definition 2.9. Set (Q, A, P) be a probability space and I C R be an interval. We say that a stochastic
process X : [ X Q — R is

1. Convex if
XAu+ (1 =v,") < AXu, )+ (1 -DX(v,") (ae.) 6)

forallu,velandAce][0,1].
This class of stochastic process are denoted by C.

Definition 2.10. Let (O, A, P) be a probability space and I C R be an interval. We say that the stochastic
process X : [ x Q — R is called

1. Continuous in probability in interval I if for all ty € I we have
P - II/I?X(Z‘, ) = X(t()’ ')9
=1
where P — lim denotes the limit in probability;
2. Mean-square continuous in the interval I if for all ty € 1
P — imEX(7, ) — X(10,-)) = 0,
t—t
where E(X(t, -)) denote the expectation value of the random variable X(t,-);
3. Increasing (decreasing) if for all u,v € I such that t < s,
X(u,) <X(,), Xu,)=XW,") (ae)

4. Monotonic if it’s increasing or decreasing;
5. Differentiable at a point t € I if there is a random variable

X(t,) — X(to, -
X'(t,) 1 IxQ — R, such thatX'(t,-) = P — lim X@,) - X, ) z t(‘)’ ).
-1y — Iy

We say that a stochastic process X : I X Q — R is continuous (differentiable) is it is continuous (diffe-
rentiable) at every point of the interval I (See [16],[12],[30]).

16
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Definition 2.11. Let (Q, A, P) be a probability space T C R be an interval with E(X(£)*) < oo forallt € T.
Let[a,b] C T,a=1ty <t <..<t, =bbea partition of [a,b] and ). € [t_1,tx] fork =1,2,...,n.
A random variable Y : Q — R is called mean-square integral of the process X(t,-) on [a, b] if the following
identity holds:

1im E[X(0)(t — i) = YOI = 0

Then we can write

b
f X(t,)dt = Y () (a.e.).

Also, mean square integral operator is increasing, that is,

b b
f X(t, )dt < f Z(t,)dt (a.e.)

where X(t,) < Z(t,-) in [a, b] ([29]).

For other information regarding Stochastic Process Calculation we refer the reader to the following
bibliographical references [4, 16].

Now, we give the well-known Hermite-Hadamard integral inequality for convex stochastic processes
(see [12]).

Theorem 2.12. If X : I X Q — R is Jensen-convex and mean square continuous in the interval T X Q, then
forany u,v € T, we have

u+v 1 v X(u,-) + X(v,")

There is also a generalization of the concept of convexity associated with stochastic processes. In [25]
we find the following definition.

u

Definition 2.13. Let 0 < s < 1. A stochastic processes X : I X Q — R is said to be s—convex stochastic
processes in the second sense if

X(ta+ (1 -0b,") <t’X(a,-) + (1 =0)°X(,")
holds almost everywhere for any a,b € I and all t € [0, 1].
In a natural way we have
Definition 2.14. A stochastic processes X : I X Q — R is said to be P—convex stochastic processes if
X(ta+(1-1b,-) < X(a,-)+ X(b,-)
holds almost everywhere for any a,b € I and all t € [0, 1].
The following definitions will be the base for our results.

Definition 2.15. Let hy,h; : [0,1] = R and m € (0, 1] . We say that a stochastic process X : [ X Q — R is
a (m, hy, hy)—convex stochastic process if

X (ta+m(l —0b,-) < hi(®H)X(a,-) + mhy()X (b,-) (a.e.)
foralla,belandtec0,1].

Remark 2.16. We can obtain Definition 2.13 choosing m = 1 and for a some fixed 0 < s < 1: hi(¢) =
' h() = (1 —1)° fort € [0,1]; also if we choose m = 1 and hi(t) = hy(t) = 1, for t € [0, 1] we obtain
Definition 2.14

17
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2.3.  About Riemann-Liouville Fractional Integral.

Before we establish our main results, we give some necessary definitions and mathematical preliminaries
of fractional calculus theory which are used further in this paper. For more details, one can consult [10, 17,
22].

Definition 2.17. Letf € Ly ([a, b]) . The Riemann-Liouville integrals J§, and J; of order a > O witha > 0
are defined by

(44 — L * _ -l
T f 0= s f (x =07 f(tydr
and
Ja _ 1 b a—1 d
pS () = ) f (t—x)"" f(ndt
respectively, where T'(a) is the Gamma function and JO, f(x) = Jg_ f(x) = f(x).

Using the Riemann-Liouville fractional integral, Sarikaya et. al. [24], established the Hermite-Hadamard
inequalities version.

Theorem 2.18. Let f : [a,b] — R be a positive function with a < b and f € L ([a,b]). If f is a convex
function on |a, b] then

f(@) + f(b)
2

f(a+b)< T'a@+1)

) S 30—y eSO+ T f@) <

with a > 0.

3. Main Results
In this section we will assume that m € (0, 1] and Ay, h, : [0, 1] — R will be non zero functions.

Lemma 3.1. Let X : I X Q — R be a twice differentiable stochastic process on int(I), where I C R is an
interval, a, b € int(I) with a < b. If X" is mean square integrable on |a, b] then the following equality holds
almost everywhere:

b-—al[ (! i 2-1 ! 2-t ¢
I(X;a/,a,b)z( 8“) UO t“+1x"(§a+7b,-)dt+fo t”“X"(Ta+§b,~)dt] (7

where |
27 2
1 =2 D (o, X+ 2 K@)~ + ”X(T’
2

a+b .
b-a) E '

Proof.
Using integration by parts we have

1
t 2t
f X" (—a +=——0b, ) dt
0 2 2

18
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1 1
-2 t 2—t 2(a+ 1) t 2—t
= — X'\ za+ —b,-|| + —— | °X'|za+—>,-|dt
b—a (2"+ 2 ’)0 a-b Jo (2‘” 2 ’)d
2 a+b 2(@+1) (! ro2-t
= - X’ - X' | za+ =—>b,-|dt
b—a ( 2 )+ b-a Jo 29T
and
! 2—-1
ft“”X"(—a+—b,-)dt
0 2 2
1 1
2 2—t t 2(a+1) 2—t t
= — X\ Z—a+<b,-|| -—— | X' |—=—a+ =b,-|dt
b-a (2 ) )0 b—a Jo (2 ) )
2 fa+b 2(@+1) ! 2t ot
= X - X' | ——a+ =b,-|dt,
b—a(2 ) b—a Jy (2‘”2)

so, adding these results we have

1 1
t 2—t 2—t t
f X" Za+ Z—b,-|dt + f X Z—a+ =b,-|dt
) 2T ) 2 ‘72
20+ 1) fl r2-t fl 2-t ¢
=— X' | = —b,-|dt - X | — —b,-|dt
b—a |Jo 24T A 2 473
Again, using integration by parts and the change of variable u = £a + 5'b and v = Z'a + b, we have
1 1 1
t 2—t -2 t 2-t 2a t 2-t
X' za+ —b,-|dt — "X | za+ b,-|| + X za+ =—b,-|dt
JZ (2“ 2 ) b—a (2“ 2 )0 b—wzjg (2“ 2 )

2 (94Xl ), 2@ flt"‘lx Lae 220 ar
b—a\"2 )T h=al 24T

1 1
2—t t 2 a+b 2« 2—t t
urX/ I iy X - a—lX = ° h.
fot (2a+2,)dt b_a(z,) bf (2a+2b,)dz
2 a+b 20 (! 2-t ¢
X |- a-ly —b,-|dt.
b-a (2 ’) b—al:t (2 “+2’)t

Replacing these values in (8), using the definition of the Riemann-Liouville fractional integral and mul-
tiplying both sides by (b — a)?/8,we get the desired result (7)

b-a? | ! o 2-t ! 2-t t
—( Sa) [j(; t"+1X”(§a+—2 b,')dl‘i‘ﬁ t‘”lX”(Ta+§b,-)dt]

201—11—* 2
_ 2 Te+2) (Jg_x(—“ ; b,-) ; J&X(#,-) —(a+ 1)X(a . b)} :

: ®)

and

(b-a) 2

The proof is complete. ®

19
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Theorem 3.2. Let X : I X Q — R be a twice differentiable stochastic process on int(I), where I C R is an
interval, a, b € int(I) with a < b. If |X"'| is mean square integrable on [a, b] and (m, hy, hy) —convex on [a, b]

then
(b -a)?

8(a+2)

1
K(hy) = ‘”l(h ! h(z—_t))d
() fot () (25
1
K (hy) = ‘”l(h ! h(z—_t))d.
(h) f(;t 2(2)+ 2|3 t

Proof. Using Lemma 3.1 we have
oot 22—t oo (2=t ot
f X" —a+ ——b,-|dt| + f X" | —a+ =b,-|dt
0 2 2 0 2 2
+ mhz( )

Since X" is (m, hy, hy) —convex on [a, b] we get that
X" (a,”)| + mhy ( )

X" (b,"))) (a.e.) ©)

I (X;,a,b)] < (K () [X” (@, )| + K (h2)

where

and

\I(X; @, a,b)| <

(b - a)?
8

}. (10)

X// (b )|

t 2-—t t
x (L 2 ) < (4
((1+ 3 ) 1 2

2
2 -
onf
So, we can write the inequality (10) as

G- [ [ et (1\1or bt t
I (X;a,a,b) < g Uot lhl(z)X (a,-)|dt+f0 f 1mh2(§)
! 2 - ! 2-—
+f0 'y (Tt) X”(a,.)|dt+f tc’”mhz(Tt)
b— 2
_( |: // )if a/+1(hl +hl( zt))dt
m|X” (b -)|f e s (5)+ 1 20 ar
5 ) 2 ) 2 ) .
1
K(hy) = ”“(h ! h(ﬁ))d
(h1) f(;l‘ 1(2)+ 1= t
1
_ a+l £ 2-t
K(hz)_fot (h2(2)+h2(—2 ))dt,

and

X (b )|

X" (b, )| dt

X (b, dt]

Making

and

we have the desired result (9).

The proof is complete. m

20
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Theorem 3.3. Let X : I X Q — R be a twice differentiable stochastic process on int(I), where I C R is an
interval, a, b € int(I) with a < b, If |X”'|? is mean square integrable on [a, b] and (m, hy, hy) —convex on [a, b)
for q > 1, then the following inequality holds

I (X;a,a,b)| < X" (a,) + mA, | X"

(b —SG)ZM[(AI b, .))l/q R

+ (A3 X"|"(a,-) + mA, | X"

“(b,)" "] (a.e)

where (1/p) + (1/q) =1,

and

1 1/p
M=[—m| .
((a+1)p+1)

Proof. From Lemma 3.1 and using the Holder inequality we have

[ (X;@,a,b)|
q l/q 1
dt) +(f
0

2 1 1/p 1
< (b_a) (f t((Hl)p) (f
8 0 0
Since |X|? is (m, h1, hy) —convex on [a, b] then
mafl 2-1 ! 1|4 t 1|4

x| (§a+Tb,«)sh1 (5 )T @+ e (3) 1 .
2—t t 2 -t
' (T“ +3b. ) < (T)

We can write the inequality (12) as
I (X;a,a,b)

e (e

2t

¢ q 1/q

t 2—t
X" za+—0,-
(5o 550

and

X" X// X// q (b, ) .

9 _
“(a.") +mh2(Tt)

1/q
t 44
" (ay i (5) X, -))dt)
1 1/q
() (5] o)) |
0 2
— (b_a)z ! (a+1) " q : t q ! t 1
_T(fot P) ( (a,-)fo hl(z)de (b,-)f0 hz(z)dt)
1 1 1/q
+( ‘](a,)f hl(ﬂ)dz+m|x”|q(b,-)f hz(ﬁ)dt) ]
0 2 0 2

21
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doing

Loy Loy
A1=f hl(z)dt, Azzf hz(z)dt
0
! V(21
A\:fh( )th_fh(—)dt,
3 ) 1 2 4 0 2 2

1 1/p 1
0 (a+D)p+1

and

we get the desired result (11).
The proof is complete. m

Theorem 3.4. Let X : I X Q — R be a twice differentiable stochastic process on int(I), where I C R is an
interval, a, b € int(I) with a < b, If |X"”'|? is mean square integrable on [a, b] and (m, hy, hy) —convex on [a, b)
for g > 1, then the following inequality holds

I (X;a,a,b)| < X"

(a,*) + Bom

2
(b—Sa) (Bl x| q(b’.))l/q (13)

+ (Bs|x")

1 1
1
B = [ #n (—)dt, B =f oy (225 g
1 L‘ 1 ) 2 0 2
! 2t 1 t
B3=f 2, (—)dt, B4=f t””hz(—)dt.
0 2 0 2

Proof. From Lemma 3.1 and using the power mean inequality for ¢ > 1 and the (m, h;, hy) —convexity of

(b, .))” "] (a.e)

where

|X|¢ we have
B=a)’[| (" wiron(t 2-t f‘ wilon (2=t 1
. < z . - Y
I (X;a,a,b)| < 3 [j(;t X 2a+ 5 b,-|dt| + Ot X 5 a+2b, dt
1-1/g | 1/g
(b - a)? f‘ il f t 22—t
< 3 (Otdt Ot 2a+2b,dt
! 2-t ¢ Va
+ (L t (T(l + Eb, ) dt)
2 1/q
< 8((b 26)13 o l( )f a+lh dt+m XN (b )f (1+1h ( )dl)
a +
1/q
+( ", )f “”h( )dt+ X[ @, )f U )d) }
Doing

! ! 21t
ft‘”lhl dt Bz_f t‘”lhz(—)dt
0 0 2

22
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1 1
2-1 ¢
B3:f Ay 8 (—)dt, B4:f t‘”lhz(—)dt
0 2 0 2

we get the desired result (13).
The proof is complete. ®

4. Some Consequences

Corollary 4.1. Let X : I X Q — R be a twice differentiable stochastic process on int(I), where I C R is an
interval, a, b € int(I) with a < b. If |X"'| is mean square integrable on [a, b] and convex on [a, b] then

, (b-a? (IX"(a,) X" (b,
I (X;a,a,b)| < 8(a+2)( @13 + @t ) (a.e.).

(14)

Proof. If in Theorem 3.2 we choose m = 1, h((¢) = t and hy(¢¥) = 1 — ¢, for all # € [0, 1] then we obtain
1
t 2—t
K(h) = t‘”lh(—) (221 a
(h) fo ( t\5)+m|—
1
1
— f tw+2dt=
0 a+3

fol = (hz(%) + m(?))m

1

a+ 1’

and

K (hy)

Making the substitution in the inequality (9) we have the desired result (14).
The proof is complete. m

Corollary 4.2. Let X : I X Q — R be a twice differentiable stochastic process on int(I), where I C R is an
interval, a,b € int(I) with a < b. Let s € (0, 1], if |X"'| is mean square integrable on [a, b] and s—convex in
the second sense on [a, b] then

I (X;,a,b)| <

X" (a,)| +

2 a
b - a) 1 29T (@ + )T (s + l))( X" (b, )|) (a.e.).

8 25(s+a+1) IF'la+s+2)

Proof. Let s € (0, 1]. In theorem 3.2 we can choose m = 1, and the functions A,(t) = ¢° for t € (0, 1], and
hy(f) = (1 —1)° for ¢ € (0, 1]. Applying the same technique as in Corollary 4.1 we get desired result. The
proof is complete. m

Corollary 4.3. Let X : I Xx Q — R be a twice differentiable stochastic process on int(I), where I C R is
an interval, a,b € int(I) with a < b. If |X"| is mean square integrable on [a, b] and P—convex in the second
sense on [a, b] then

. (b-a)
X avab) < 3o 1)(

X" (a, )| +

X" (b)) (ae).

Proof. In theorem 3.2 we can choose m = 1, and the functions & (f) = hy(t) = 1 for ¢ € (0, 1]. Applying the
same technique as in Corollary 4.1 we get desired result. The proof is complete. m
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Remark 4.4. If we choose @ = 1 in Corollaries 4.1, 4.2 and 4.3, we have the following inequalities using

the Riemann integral, respectively:

1. for convex stochastic processes

1 b a+b (b-a)* (IX" (a,)) X" (b,
'm (f; X(t, )df) - X( 7 )’ < 48 ( 2 + 2 ) (a.e.).

2. for s—convex stochastic processes in second sense
1 b a+b (b-ayT(s+1)
—_— X(t,)dt]| - X ol =
‘(b—@(fa SURIE )I Frrereral

3. for P—convex stochastic processes

X" (b)) (ae).

X" (a, )| +

X" (b)) (ae.).

X" (a,)| +

1 b a+b b - a)’
R R A

Corollary 4.5. Let X : I X Q — R be a twice differentiable stochastic process on int(I), where I C R is an
interval, a,b € int(I) with a < b, If |X”|? is mean square integrable on [a, b] and convex on [a, b] for g > 1,

then the following inequality holds almost everywhere

_ 2 7" . 1" . 1/q 7 . " . 1/q
T P M[(pf 1 (a. el 1 (b, )) +(3|X 1 (a. el . >) ]
where (1/p)+(1/ =1 and
1 l/p
=((a+1)p+1)

Proof. If in Theorem 3.3 we make m = 1, hy(¢) = t and h,(¢) = 1 — ¢ then we have
1

bt by
A =fh (—)dt:f Lar=- = A,
) 2 o 20 4
1 1
t t 3
Azthg(—)dtzf (1-35)dr=7 =45
, 22 , U\ T2)M g

then the inequality for convex Stochastic Processes has the form
- l( X" (@) + 31X (b, -))” ‘. (3 X719 (@) + X" (b, -))”q}
8 4 '

I (X;a,a,b)| <
[ (X;a,a,b) 1

[ ]
Corollary 4.6. Ler X : I X Q — R be a twice differentiable stochastic process on int(I), where I C R is an
interval, a,b € int(I) with a < b. Let s € (0,1), if | X”'|? is mean square integrable on [a, b] and s—convex in

the second sense on [a, b] for g > 1, then the following inequality holds almost everywhere

e q(b,_))l/q

X" @)+ (2% - 1)

b— 2
11 (X;a,a,b)| < __bmar [(
23+5/q (s + 1)1/4
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X// q (a’ ) + XH

(=)

"®.9)"|
where (1/p) +(1/q) = 1 and

1 1/p
M:((a+1)p+l) '

Proof. Let s € (0, 1]. In theorem 3.3 we can choose m = 1, and the functions A,(¢) = ¢° for t € (0, 1], and
hy(t) = (1 —1)* for t € (0, 1]. Applying the same technique as in Corollary 4.5 we get desired result. The
proof is complete. m

Corollary 4.7. Let X : I X Q — R be a twice differentiable stochastic process on int(I), where I C R is an
interval, a,b € int(I) with a < b. Let s € (0, 1], if |X”'|? is mean square integrable on [a, b] and P—convex in
the second sense on [a, b] for g > 1, then the following inequality holds almost everywhere

XI/

I (X;a,a,b)| < - a)zM[(

. “(a,) + |X//|q . ‘))l/q] ’

where (1/p) +(1/q) = 1 and

1 1/p
M:((a+1)p+1) '

Proof. In theorem 3.3 we can choose m = 1, and the functions h;(#) = hy(¢) = 1 for ¢ € (0, 1]. Applying the
same technique as in Corollary 4.1 we get desired result. The proof is complete. m

Remark 4.8. Ifwe choose @ = 1 in Corollaries 4.5, 4.6 and 4.7 then we get the following inequalities using
the Riemann integral, respectively, almost everywhere:

1. for convex stochastic processes

1 b a+b
b—a) (f X(t")dt)_x( 2 )‘

(b - ay? (|X”|q (a,) +3|X" (b, -))”q . (3 X" (a,-) + |X"| (b, -))”‘1
T 16(@2p+ DVP 4 4 '

2. for s—convex stochastic processes in the second sense

b
ol

b-a
244 (s + DV @2p + DV/p

1/q

[(|X//|q (a,-) + (2s+1 _ 1) |X//|q (b, )>

(@ =) @+ [ 6.0) "
3. for P—convex stochastic processes
1 b a+b (b —a)’ i I 1/q
), o) x50 ) = e o) )
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Corollary 4.9. Let X : I X Q — R be a twice differentiable stochastic process on int(I), where I C R is an
interval, a,b € int(I) with a < b, If |X"'|? is mean square integrable on [a, b] and convex on [a,b] for g > 1,
then the following inequality holds almost everywhere
g /g
(b, ~)) } .

|

Proof. If in Theorem 3.4 we make m = 1, hi(t) = hy(t) = t then we have

1 1
t t 1
B = | ' (—)dt = f "'-dt=——— =B
1 L 2 o 20 2+3)

1 1
2t 2t 1 1
B, = e, | Z— dt:f o+l dt = - =B
2 L 2(2) o 2 2@+2) 2(+3) 3

so, the inequality for convex stochastic processes has the form
. 1/q
( (b, ~)) } .

Remark 4.10. Ifwe choose a = 1 in Corollary (4.9), then we get the following inequality using the Riemann

integral:
2 b a+b b - a)’ , 1/g
b-a) (j,; xa@, ')dl) - 2X( 2 )‘ < 3541/ [( (b, .))

almost everywhere; in addition, if ¢ = 1 then

2 b a+b (b - a)?
([ e -2x(52 ) < 5

5. Conclusion

(b-a)?

X//
23+a (@ + 3)

I (X;a,a,b)| < X" (a,) +

+

X" (b, ) )”" . (|X"|q (@.")
(@+2) (@+2)

(b —a)

X"
23414 (@ + 3)

I (X;a,a,b)| < X" (a,) +

X719 (b, )\ (1X7)9 (a, )
m+2)) +((a+D *

X" q (Cl, ) + X"

+

X714 (b, )\ L (X @)
3 3

XN X//

(a,”) +

b)) (ae).

In the development of this work we have found some new inequalities of the Hermite-Hadamard type
valid for stochastic processes whose second derivatives are (m, hy, h;)— convex, using the fractional integral
of Riemann -Liouville. Additionally, as corollaries and observations, we have achieved some consequences
derived from these results. We hope that this work will be motivating for new research in this area.
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