Una extensión. Nueva familia de polinomios generalizados tipo Apostol Frobenius-Euler. Algunas aplicaciones

Autores/as

María José Ortega
Universidad del Atlántico
Alejandro Urieles Guerrero
Universidad del Atlántico
https://orcid.org/0000-0002-7186-0898
William Ramírez
Universidad del Atlántico

Palabras clave:

polinomios generalizados, Apostol Frobenius-Euler, aplicaciones

Sinopsis

El objetivo principal de este libro es describir los resultados de investigación de los autores en el estudio de los polinomios generalizados tipo Apostol Frobenius-Euler de nivel m, buscando una exposición clara con todos los detalles posibles en las demostraciones de los teoremas propuestos como nuevos resultados. La familia clásica de polinomios Frobenius-Euler ha sido objeto de estudio desde su aparición; algunas generalizaciones han sido planteadas, pero son las extensiones tipo Apostol a las que se les ha mostrado más interés.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Apostol, T.: On the Lerch Zeta function. Pacific J. Math. 1, 161-167. (1951).

Apostol, T.: Introduction to Analitic Number Theory. Springer- Verlag, New York. (1976).

Askey, R.: Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics. SIAM. J. W. Arrowsmith Ltd., Bristol 3, England. (1975).

Bayad, A., Kim, T.: Identities for Apostol-Type Frobenius-Euler Polynomias Resulting from the Study of a Nonlinear Operator. Russi. Jou. Mat. Phy. 23, 164-171. (2016).

Choi, J., Kim, D.S., Kim, T., Kim, Y.H.: A note on some identities of Frobenius-Euler numbers and polynomials. Int. J. Math. Math.Sci. 2012, 1-9. (2012).

Comtet, L.: The Art of Finite and Infinite Expansions. Reidel Dordrecht and Boston. (1974).

Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Trascendental Functions. Vol 1. (1953).

Cheon G.-S. and Kim J.-S. Stirling matrix via Pascal matrix, Linear Algebra Appl. Vol 329, 49-59. (2001).

Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, Addison-Wesley Publishing Company, Inc., New York. (1994).

Hernández-Llanos, P., Quintana, Y., Urieles, A.: About extensions of generalized Apostol-type polynomials. Results Math. 68, 203-225. (2015).

Kurt, B.: Some relationships between the generalized Apostol- Bernoulli and Apostol-Euler polynomials. Turk. J. Anal. Number Theory. 1, 54-58. (2013).

Kurt, B., Simsek, Y.: On the generalized Apostol-type Frobenius- Euler polynomials. Adv. Difference Equ. 1, 1-10. (2013).

Kurt, B.: On the Multiple Sums of Bernoulli, Euler and Genocchi Polynomials. Int. Journal of Math. Analysis. 8, 373-387. (2013).

Comtet, L. Advanced Combinatorics. The art of finite and infinite expansions. Translated from French by J. W. Nienhuys. (1974).

Lee, G.-Y, Kim, J.-S. Lee. S.-G.: Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart. 1, 203-213. (2002).

Lu, D.-Q., Luo, Q.-M.: Some properties of the generalized Apostol-type polynomials. Bound. Value Probl. 64, 1-13. (2013).

Luck, Y.: The Special Functions and their Approximations. Acudemic Press (1969).

Luo, Q.-M.: Extensions of the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J. Math. 48, 291-309. (2011).

Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 1, 290-302. (2005).

Luo, Q.-M., Srivastava, H.M.: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 51, 631-642. (2006).

Gwang, L. and Seong, C. The generalized Pascal matrix via the generalized Fibonacci matrix and the generalized Pell matrix. J. Korean Math. Soc. 45, 479-491. (2008).

Natalini, P., Bernardini, A.: A generalization of the Bernoulli polynomials. J. Appl. Math. 3, 155-163. (2003).

Oldham, K., Spanier, J.: The fractional Calculus. T. Appl. of Differentiation. El Sevier Science (1974).

Quintana, Y. Ramírez, W. and Urieles, A.: On an operational matrix method based on generalized Bernoulli polynomials of level m. Calcolo. 55(3), 29 (2018).

Quintana, Y. Ramírez, W. and Urieles, A.: Generalized Apostol- Type polynomials matrix and its algebraic properties. Math. Repo. (2019). 21(2), 249-264.

Rainville, ED.: Special Functions. Macmillan Company, New York (1960). Reprinted by Chelsea publishing Company, Bronx. (1971).

Ramírez, W., Castilla, L., Urieles, G.: An Extended Generalized q-Extensions for the Apostol Type Polynomials, Abstract and Applied Analysis. Abstract and Applied Analisis (2018).

Riordan, J.: Combinatorial identities. Wiley, New York, London and Sydney. (1968).

Simsek, Y.: Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their application. arXiv:1111.3848v2.

Srivastava, H.M., Choi, J.: Series associated with the Zeta and related funtions. Kluwer Academic. Springor Netherlands (2001).

Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam. (2012).

Srivastava, H.M. Manocha, H.L.: A Treatise on Generating Functions. Ellis Horwood Ltd., West Sussex, England. (1984).

Szego, G.: Orthogonal Polynomials, American Math. Soc. Providence, Rhode Island. (1939).

Tremblay, R., Gaboury, S. and Fugère, B-J.: A new class of generalized Apostol-Bernoulli and some analogues of the Srivastava-Pintér addition theorem. Appl. Math. Lett. 24, 1888- 1893. (2011).

Yeon, G. and Seong, H.: The generalized Pascal matrix via the generalized Fibonacci matrix and the generalized Pell matrix. J. Korean Math. 45, 479 -991. (2008).

Wang, W., Jia, C., Wang, T.: Some results on the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 55, 1322- 1332. (2008).

Whittaker, E., Watson, G.: A course of modern Analysis. (1915).

Zhang, Z. and Zhang, Y.: The Lucas matrix and some combinatorial identities. Indian J. Pure Appl. Math. (2007).

Zhang, Z. Liu, M. An extension of the generalized Pascal matrix and its algebraic properties. (1998).

Zhang, Z. Wang, J.: Bernoulli matrix and its algebraic properties. (2006).

Descargas

Publicado

octubre 7, 2018

Colección

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Detalles sobre esta monografía

ISBN-13 (15)

978-958-5525-76-4

Fecha de publicación (01)

2018