QUÍMICA: AVANCES Y PERSPECTIVAS Memorias II Congreso de Química del Caribe

Autores/as

Farrah Cañavera Buelvas
Universidad del Atlántico
Victoria Arana Rengifo
Universidad del Atlántico

Palabras clave:

Quimica

Sinopsis

En esta obra se dan a conocer los últimos avances en la química y su relación con otras áreas del saber como la biología y la física; a través de las investigaciones desarrolladas por grupos de investigación de Colombia y países de la región; presentados en el marco del II Congreso Internacional de Química del Caribe. En los diferentes trabajos aquí presentados, se explora la situación actual de la química y los retos que enfrentará en el futuro: nuevas formas de energía, medio ambiente, nuevos materiales, desarrollos tecnológicos, recursos hídricos, contaminación ambiental, alimentos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Y. Cao, Z. F. Ma, H. Zhang, Y. Jin, Y. Zhang y F. Hayford. Phytochemical properties and nutrigenomic implications of yacon as a potential source of prebiotic: Current evidence and future directions. 2018. Foods. 7 (4): p. 59-72.

G. T. Choque, W. M. Da Silva, M. R. Marostica y G. M. Pastore. Yacon (Smallantus . sonchifolius): A functional food. 2013. Plant Foods for Human Nutrition. 68 (3): p. 222-228.

J. Seminario, I. Manrique y M. Valderrama. El yacon: Fundamentos para el aprovechamiento de un recurso promisorio. 2003. Centro Internacional de la Papa (CIP), Universidad Nacional de Cajamarca y Agencia suiza para el Desarrollo y la Cooperacion (Cosude), Lima – Peru.

C.A. Calderon, D.M. Fandino y T.M. Chavez. El Yacon: una alternativa para el sector agricola colombiano. 2017. Colombia, Universidad de la Salle.

P.M. Rolim. Glycemic profile and prebiotic potential “in vitro” of bread with Yacon (Smallanthus sonchifolius) flour. 2011. Ciência e Tecnologia de Alimentos. 31 (2): p.467- 474.

A.P. Gusso, P. Mattanna y N. Richards. Yacon: benefícios à saúde e aplicações tecnológicas. 2015. Ciência Rural, Santa Maria. 45 (5): p. 912-919.

A.O.A.C. USA: Official Methods of Analysis Association of Official Analytical Chemists. 1997. Methods 78.18.

A.O.A.C. USA: Official Methods of Analysis Association of Official Analytical Chemists. 1997. Methods 20.013.

A.O.A.C. USA: Official Methods of Analysis Association of Official Analytical Chemists. 1997. Methods 932.12.

A.O.A.C. USA: Official Methods of Analysis Association of Official Analytical Chemists. 1997. Methods 981.12.

Norma Técnica Colombiana, NTC 4623. Productos de frutas y verduras. Determinación de la acidez titulable. ICONTEC

A.O.A.C. USA: Official Methods of Analysis Association of Official Analytical Chemists. 1997. Methods 7009/84, 942, 05/90.

A.O.A.C. USA: Official Methods of Analysis Association of Official Analytical Chemists. 1997. Methods 920, 86.

A.O.A.C. USA: Official Methods of Analysis Association of Official Analytical Chemists. 1997. Methods 31.4.02.

C. M. Bryant y B. R. Hamaker. Effect of Lime on Gelatinization of Corn Flours and Starch. 1997. Cereal Chemistry. 74 (2): p. 171-175.

G.A. Valdez, M.I. Margalef y M.I. Gómez. Formulación de barra dietética funcional prebiótica a partir de harina de yacon (Smallanthus sonchifolius).2013. Diaeta. 31 (142): p. 27-33.

M. Tostes, M. Viana, M. Grancieri, T.C. Luz, H. De Paula, R. Pedrosa y N.M. Brunoro. Yacon effects in immune response and nutritional status of iron and zinc in preschool children. 2014. Nutrition 30 (2014): p. 666-672.

S. A. Aasa, O. O. Ajayi. y O.A Omotosho. Design optimization of hot air dryer for yam flour chunk. 2012. Asian Hournal of Scientific Reserch. 5 (3): p. 143-152.

J. L. Salager, Recuperación mejorada del petróleo, Mérida, Venezuela: Universidad de los Andes, Facultad de, 2005.

J. Gracia y J. López, Asfáltenos. Estructura, fuerzas intermoleculares, actividad superficial y agregación, Ciudad de México: UNAM, 2015.

J. G. Delgado, Asfáltenos. Composición, agregación, precipitación, Mérida-Venezuela: Universidad de los Andes, Facultad de Ingeniería, 2006.

L. W. Corbett, «Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization, Analytical chemistry, vol. 41, nº 4, p. 576–579, 1969.

A. B. D. Cassie, «Contact Angle» Discussions of the Faraday Society, vol. 3, pp. 11-16, 1948.

E. Calvo, R. Bravo, A. Amigo y J. Gracia, «Dynamic surface tension, critical micelle concentration, and activity coefficients of aqueous solutions of nonyl phenol ethoxylates» Fluid Phase Equilibria, vol. 282, nº 1, pp. 14-19, 2009.

M. S. Akhlaq, P. Götze, D. Kessel y W. Dornow, «Adsorption of crude oil colloids on glass plates: measurements of contact angles and the factors influencing glass surface properties» Colloids and Surfaces A: Physicochemical and Engineering Aspects , nº 126, pp. 25 - 36, 1997.

M. Gloton, M. Turmine, A. Mayaffre, P. Lettelier y H. Toulhoa, «Study of asphaltenes adsroption» Physical Chemistry of Colloids and Interfaces in Oil Production, nº TECHNIP, pp. 89-96, 1992.

B. Jill S, «Effective wettability of minerals exposed to crude oil» Current Opinion in Colloid & Interface Science, vol. 6, nº 3, pp. 191 -196, 2001.

F. Bartell y J. Shepard, «Surface roughness as related to hysteresis of contact angles.» Journal of Physical Chemistry, vol. IV, nº 57, pp. 455-458, 1953.

J.-L. Salager, Recuperación mejorada de petróleo, Mérida, Venezuela: Universidad de los Andes. Facultad de Ingeniería.

Escuela de Ingeniería Química. Escuela de Laboratorio de Formulación, Interfases, Reología y Procesos., 2005.

H. Singh y J. Cai, «Screening improved recovery methods in tight-oil formations by injecting and producing through

fractures» International Journal of Heat and Mass Transfer, vol. 116, pp. 977-993, 2018.

K. Pedersen y P. Christensen, Phase Behavior of Petroleum Reservoir Fluids, Boca Raton, Florida, USA.: Taylor & Francis

Group, LLC, 2007.

A. Bera, T. Kumar, K. Ojha y A. Mandal, «Screening of microemulsion properties for application in enhanced oil recovery» Fuel, vol. 121, pp. 198-207, 2014.

M. Abe, D. Schechter, R. Schechter, W. Wade, U. Weerasooriya y S. Yiv, «Microemulsion formation with branched

tail polyoxyethylene sulfonate surfactants» Journal of Colloid and Interface Science, vol. 114, nº 2, pp. 342-356, 1986.

S. Engelskirchen, N. Elsner, T. Sottmann y R. Strey, «Triacylglycerol microemulsions stabilized by alkyl ethoxylate

surfactants—A basic study: Phase behavior, interfacial tension and microstructure» Journal of Colloid and Interface Science, vol. 312, nº 1, pp. 114-121, 2007.

M. Rosen, Surfactants and interfacial phenomena, New Jersey, NY, USA.: John Wiley & Sons, Inc., 2004.

K. Birdi, Surface and Colloid Chemistry. Principles and Aplications, Boca Ratón, FL, USA.: Taylor and Francis Group, LLC, 2010.

J. Prausnitz, R. Lichtenthaler y E. Gomez de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, Englewood Cliffs, NJ, USA.: Prentice-Hall Inc., 1986.

R. L. B. Robert T. Johansen, «Chemistry of Oil Recovery» de ACS Symposium Series, Washington, D.C., USA., 1979.

A. Bellocq, J. Biais, P. Bothorel, B. Clin, G. Fourche, P. Lalanne, B. Lemaire, B. Lemanceau y D. Roux, «Microemulsions»

Advances in Colloid and Interface Science, vol. 20, nº 3-4, pp. 167-272, 1984.

A. Novelo-Torres y J. Gracia-Fadrique, «Trayectorias en diagramas ternarios,» Educación Química, vol. 21, nº 4, pp. 300-

, 2010.

J. M. Sorensen, T. Magnussen, P. Rasmussen y A. Fredenslund, «Liquidliquid equilibrium data: Their retrieval, correlation and prediction part i: Retrieval» Fluid Phase Equilibria, vol. 2, nº 4, pp. 297-309, 1979.

W. D. Bancroft, «The theory of emulsification I» The Journal of Physical Chemistry, vol. 16, nº 3, pp. 177-233, 1911.

Balasundram, N., K. Sundram, and S. Samman, Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 2006. 99(1): p. 191-203.

Hirvonen, T., et al., Intake of flanonols and flavones and risk of coronary heart disease in male smokers. Epidemiology, 2001. 12(1): p. 62-67.

Mennen, L.I., et al., Consumption of Foods Rich in Flavonoids Is Related to a Decreased Cardiovascular Risk in Apparently Healthy French Women. Journal of Nutrition, 2004. 134(4): p. 923-926.

Birt, D.F., S. Hendrich, and W. Wang, Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacology & Therapeutics, 2001. 90(2–3): p. 157-177.

Arai, Y., et al., Structure–activity relationship of flavonoids as potent inhibitors of carbonyl reductase 1 (CBR1). Fitoterapia, 2015. 101(0): p. 51-56.

Lorenzo, J.M. and P.E.S. Munekata, Phenolic compounds of green tea: Health benefits and technological application in

food. Asian Pacific Journal of Tropical Biomedicine, 2016. 6(8): p. 709-719.

Ng, H.S., et al., Thermo-sensitive aqueous biphasic extraction of polyphenols from Camellia sinensis var. assamica leaves. Journal of the Taiwan Institute of Chemical Engineers, 2017. 79: p. 151-157.

Azevedo, R.S.A., et al., Multivariate analysis of the composition of bioactive in tea of the species Camellia sinensis. Food

Chemistry, 2019. 273: p. 39-44.

Sutherland, B.A., R.M.A. Rahman, and I. Appleton, Mechanisms of action of green tea catechins, with a focus on ischemiainduced neurodegeneration. The Journal of Nutritional Biochemistry, 2006. 17(5): p. 291-306.

Folin, O. and V. Ciocalteu, On tyrosine and tryptophane determinations in proteins. J. Biol. Chem., 1927. 73: p. 627-650.

Singleton, V.L. and J.A. Rossi, Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Vitic., 1965. 16: p. 144-158.

Ainsworth, E.A. and K.M. Gillespie, Estimation of total phenolic content and other oxidation substrates in plant tissues

using Folin-Ciocalteu reagent. Nat. Protocols, 2007. 2(4): p. 875-877.

Céspedes, C.L., et al., Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry

Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chemistry, 2008. 107(2): p. 820-829.

Sanchez-Rangel, J.C., et al., The Folin-Ciocalteu assay revisited: improvement of its specificity for total phenolic content

determination. Analytical Methods, 2013. 5(21): p. 5990-5999.

Goulas, V. and G.A. Manganaris, Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chemistry, 2012. 131(1): p. 39-47.

P?kal, A. and K. Pyrzynska, Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Analytical Methods, 2014. 7(9): p. 1776-1782.

Sun, B., J.M. Ricardo-da-Silva, and I. Spranger, Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins.

Journal of Agricultural and Food Chemistry, 1998. 46(10): p. 4267-4274.

S. Y. Chan, W. S. Choo, D. J. Young, and X. J. Loh, “Pectin as a Rheology Modifier: Origin, Structure, Commercial

roduction and Rheology,” Carbohydr. Polym., 2016.

T. Í. S. Oliveira et al., “Optimization of pectin extraction from banana peels with citric acid by using response

surface methodology,” Food Chem., vol. 198, pp. 113–118, 2016.

E. N. Medellín et al., “Valoración de residuos agroindustriales - frutas- en Medellín y el sur del Valle de Aburrá,

Colombia,” Rev. Fac. Nac. Agron., vol. 61, no. 1, pp. 4422–4431, 2008.

M. Pagliaro et al., “Pectin Production and Global Market,” Agro Food Ind. Hi Tech, vol. 27, no. 5, pp. 17–20, 2016.

S. V. Popov et al., “Chemical composition and anti-inflammatory activity of a pectic polysaccharide isolated from sweet pepper using a simulated gastric medium,” Food Chem., vol. 124, pp. 309–315, 2011.

V. B. V. Maciel, C. M. P. Yoshida, and T. T. Franco, “Chitosan/pectin polyelectrolyte complex as a pH indicator,” Carbohydr. Polym., vol. 132, pp. 537–545, 2015.

S. V. Popov, P. A. Markov, G. Y. Popova, I. R. Nikitina, L. Efimova, and Y. S. Ovodov, “Anti-inflammatory activity of low and high methoxylated citrus pectins,” Biomed. Prev. Nutr., vol. 3, pp. 59–63, 2013.

X. Huang, D. Li, and L. jun Wang, “Characterization of pectin extracted from sugar beet pulp under different drying conditions,” J. Food Eng., vol. 211, pp. 1–6, 2017.

J. Mierczy?ska, J. Cybulska, and A. Zdunek, “Rheological and chemical properties of pectin enriched fractions

from different sources extracted with citric acid,” Carbohydr. Polym., 2017.

O. Kurita, T. Fujiwara, and E. Yamazaki, “Characterization of the pectin extracted from citrus peel in the presence of citric acid,” Carbohydr. Polym., vol. 74, no. 3, pp. 725–730, 2008.

C. Hiemenz, Paul. Rajagopalan, Raj. “Principles of Colloid and Surface Chemistry”, Third edition, Marcel Dekker editorial, chapter 1 , 1997.

H. Jonassen, A. Treves, A. L. Kjøniksen, G. Smistad, and M. Hiorth, “Preparation of ionically cross-linked pectin nanoparticles in the presence of chlorides of divalent and monovalent cations,” Biomacromolecules, 2013.

Khan, H., Kanwal, F. and Mehboob, R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine, vol 7, 2017, p. 478–482.

Stickler, D.J. Bacterial biofilms in patients with indwelling urinary catheters. Nat. Clin. Pract, vol. 5, 2008, p. 598–608.

Jenkins, D. Nosocomial infections and infection control. Prevention and control of infection. Medicine, vol.45, 2017, p. 629–633.

Arenas, E., Bucio, E., Burillo, G. and López, G. Radiation grafting of Nisopropylacrylamide onto poly (vinyl chloride) tubes by gamma irradiation. Polymer Bulletin, vol. 58, 2006, p. 401– 409.

Ogata, T., Nagasako, T., Umeki, Y., Kurihara, S. and Nonaka, T. Synthesis, properties, and functions of thermosensitive copolymers having pyridyl and/or pyridinium groups. Reactive &Functional Polymers, vol 67, 2007, p. 700–707.

Wua, C., Wanga, Z., Liua, S., Xieb, Z., Chena, H. and Lua, X. Simultaneous permeability, selectivity and antibacterial property improvement of PVC ultrafiltration membranes via in-situ quaternization. Journal of Membrane Science, vol. 548, 2018, p. 50–58.

Meléndez-Ortiz, I., Varca, G., Lugão, A. and Bucio, E. Smart Polymers and Coating Obtained by Ionizing Radiation: Synthesis and Biomedical Applications. Open Journal of Polymer Chemistry, vol. 5, 2015, p. 17-33.

Contreras-García, A., Ramírez-Jiménez, A. and Bucio, E. Gamma Rays: Technology, Applications, and Health Implications. Chapter 12: Grafting polymerization induced by gamma rays. Nova Publishers, Editor: Istvan Bikit, 2013, p. 287-317.

Meléndez-Ortiz H. I., Bucio, E. and Burillo, G. Radiation grafting of 4-vinylpyridine and N-isopropylacrylamide onto polypropylene to give novel pH and thermo-sensitive films. Radiation Physics and Chemistry, vol. 78, 2009, p. 1–7.

Estrada Paneque, A., Gallo González, M., & Nuñez Arroyo, E. Contaminación ambiental, su influencia en el ser humano,

en especial: el sistema reproductor femenino. Universidad y Sociedad [seriada en línea], 2016, 8 (3). p. 80-86.

IDEAM, Estudio Nacional del Agua. Instituto de Hidrología, Meteorología y Estudios Ambientales., 2015.

H. S. Mansur. Quantum dots and nanocomposites. Wiley Interdiscip. Rev. Nanomed. Nanobiotech. 2010, 2 (2), p. 113- 129.

Zhang, Z.; Zhang, J.; Chen, N.; Qu, L. Energy Environ. Sci. 2012, 5 (10), p. 8869.

S. O. Oluwafemi, N. Revaprasadu, A. J. Ramirez. J. Cryst. Growth. 2008, 310 (13), p. 3230-3234; (b) J. M. Tsay, M. Pflughoefft, L. A. Bentolila, S. Weiss. J. Am. Chem. Soc. 2004, 126 (7), 1926-1927.

Hestrin, S., Schramm, M. Biochem. J., 1954, Vol. 58, p. 345-352.

Chang, M. M., Chou, T. Y., & Tsao, G. T. (1981). Structure, pretreatment and hydrolysis of cellulose. En M. M. Chang, T. Y. Chou, & G. T. Tsao, Bioenergy (1 ed., Vol. 20, págs. 15 - 42). Indiana, Estados Unidos.

Carreño, S., & Murcia, L. D. (24 de Junio de 2005). Obtención de acetato de celulosa a partir de residuos celulósicos postconsumo. Proyecto trabajo de grado para optar el título de Químico. Universidad Industrial de Santander. Facultad de Ciencias. Escuela de Química. Bucaramanga, Santander, Colombia.

Swatloski, R., Spear, S., Holbrey, J., & Rogers, R. (2002). Dissolution of Cellose with Ionic Liquids. Communications. Journal of the American Chemical Society, 124(18), 4974–4975. doi:10.1021/ja025790m

Rosa, S. M. (2015). Hidrólisis ácida de celulosa y biomasa lignocelulosica asistida con liquidos ionicos. Universidad Autonoma de Madrid. Madrid, España. Consejo Superior de Investigaciones Cientificas.

Dopico-Ramírez, D., Hernández-Corvo, Y., León-Fernández, V., & Bordallo-López, E. (Enero - Abril de 2013). Líquidos iónicos para la transformación de biomasa lignocelulósica ICIDCA. Sobre los Derivados de la Caña de Azúcar [en linea] (Enero- Abril). 47. Quivicán, Mayabeque, Cuba. Recuperado el 01 de Mayo de 2017, de http://www.redalyc.org/articulo.oa?id=2231 26409004

ARUKWE, U., Amadi, B. and Duru, M. Chemical composition of Persea americana leaf, fruit and seed. (2012), IJRRAS, Vol. 11, p. 346-349.

BOADI, N., Saah, S. and Mensah, J. (2015). Phytoconstituents, antimicrobial and antioxidant properties of the leaves of Persea americana Mill cultivated in Ghana. Journal of Medicinal Plants Research. Vol. 9, p. 933-939.

B. Williamson, B. Tudzynski, P. Tudzynski And J. A. L. Van Kan, Mol. Plant Pathol., 2007, Vol. 8, p. 561–580.

Tafur, R.; Toro, J.; Perfetti, J.; Ruiz, D.; and Morales, J. Plan Frutícola Nacional (PFN). Ministerio de Agricultura y Desarrollo Rural, Fondo Nacional de Fomento Hortofrutícola, Asohofrucol, 2006, SAG, p. 43.

V. Muthuviveganandavel, P. Muthuraman, S. Muthu and K. Srikumar, J. Toxicol. Sci., xz 2008, Vol. 33, p. 25–30.

Bakkali F, Averbeck S, Averbeck D and Idaomar, M. Biological effects of essential oils -A review. Food and Chemical Toxicology, Vol. 46, p. 446-45.

A. Simic, M. D. Sokovic, M. Ristic, S. Grujic- Jovanovic, J. Vukojevic and P. D. Marin, Phyther. Res., 2004, Vol. 18, p. 713–717.

B. Melgar, M. I. Dias, A. Ciric, M. Sokovic, E. M. Garcia-Castello, A. D. Rodriguez- Lopez, L. Barros and I. C. R. F. Ferreira, Ind. Crops Prod., 2018, Vol. 111, p. 212–218.

J. Singh, Maceration, Percolation and Infusion Techniques for the Extraction of Medicinal and Aromatic Plants, Vol. 1, p. 67.

H.-F. Zhang, X.-H. Yang and Y. Wang, Microwave assisted extraction of secondary metabolites from plants: Current status and future directions, Trends Food Sci. Technol., 2011, Vol. 22, p. 672–688.

Lim. TK. Edible Medicinal and Non- Medicinal Plants:Fruits. Springer. 2012. 221- 226 p.

Castillo L, Jiménez J, Delgado M. Secondary metabolites of the Annonaceae, Solanaceae and Meliaceae families used as biological control of insects. Trop Subtrop Agroecosystems [Internet]. 2010 [cited 2017 Jun 22];12(3). Available from: http://www.redalyc.org/html/939/93915170 004/

Krinski D, Massaroli A, Machado M. Potencial inseticida de plantas da familia Annonaceae. Rev Bras Frutic [Internet]. 2014 [cited 2017 Jun 22];36(spe1):225–42. Available from: http://www.scielo.br/scielo.php?script=sci_ arttext&pid=S0100- 29452014000500027&lng=pt&tlng=pt

Zamar MI, Arce de Hamity MG, Andrade A, Amendola de Olsen A, Hamity V. Efecto De Productos No Convencionales Para El Control De Thrips Tabaci (Thysanoptera: Thripidae) En El Cultivo De Ajo (Allium Sativum) En La Quebrada De Humahuaca (Jujuy-Argentina). Idesia (Arica). 2007;25(3):41–6.

Salas J. Efecto de productos no convencionales para el control de thrips tabaci (thysanoptera: thripidae) en el cultivo de ajo (allium sativum) en la quebrada de humahuaca (jujuy-argentina). Bioagro. 2003;15(1):47–54.

Giraldo A, Guerrero G. Rollinia mucosa (Jacq.) Baillon (Annonaceae) active metabolites as alternative biocontrol agents against the lace bug Corythucha gossypii (Fabricius): an insect pest. Univ Sci [Internet]. 2018 Feb 6 [cited 2018 Mar 6];23(1):21–34. Available from: http://revistas.javeriana.edu.co/index.php/ scientarium/article/view/18857/16578

Liaw CC, Chang FR, Wu CC, Chen SL, Bastow KF, Hayashi KI, et al. Nine new cytotoxic monotetrahydrofuranic annonaceous acetogenins from Annona montana. Planta Med. 2004;70(10):948–59.

Liaw C-C, Chang F-R, Chen S-L, Wu C-C, Lee K-H, Wu Y-C. Novel cytotoxic monotetrahydrofuranic Annonaceous acetogenins from Annona montana. Bioorg Med Chem [Internet]. 2005 Aug [cited 2017 Jul 6];13(15):4767–76. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0968089605003937

Wang LQ, Zhao WM, Qin GW, Cheng KF, Yang RZ. Four novel annonaceous acetogenins from Annona montana. Nat Prod Lett. 1999;14(2):83–90.

Colom OÁ, Neske A, Chahboune N, Zafra- Polo MC, Bardón A. Tucupentol, a novel mono-tetrahydrofuranic acetogenin from Annona montana, as a potent inhibitor of mitochondrial complex I. Chem Biodivers. 2009;6(3):335–40.

Brasil da Silva Bandeira, Pernambuco Falkyner H, Lima S, Cesar A, Trassato B, Jesus Vieira D, Falkyner da Silva Bandeira H, et al. Bioactivity of Annona montana Macfad extracts on the black cowpea aphid (Aphis craccivora Koch). Rev Bras Ciências Agrárias Univ Fed Rural [Internet]. 2017 [cited 2017 Jul 6];12(11):41–6. Available from: http://www.redalyc.org/articulo.oa?id=1190 50448007

Souza CM, Baldin ELL, Ribeiro LP, Silva IF, Morando R, Bicalho KU, et al. Lethal and growth inhibitory activities of Neotropical Annonaceae-derived extracts, commercial formulation, and an isolated acetogenin against Helicoverpa armigera. J Pest Sci (2004). 2017;90(2):701–9.

Ribeiro LP, Vendramim JD, Andrade MS, Bicalho KU, Silva MFGF, Vieira PC, et al. Tropical Plant Extracts as Sources of Grain- Protectant Compounds Against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Neotrop Entomol. 2014;43(5):470–82.

Contreras, J.; Calderón, L.; Guerra, E.; García, B. 2011. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International. 44(7): 2047-2053.

Angulo C., R. 2009. Gulupa Passiflora edulis var. edulis Sims. Bayer CropScience S.A., Bogotá, D.C.

Dembitsky, V. M.; Poovarodom, S.; Leontowicz, H.; Leontowicz, M.; Vearasilp, S.; Trakhtenberg, S.; Gorinstein, S. 2011. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Research International. 44(7): 1671-1701.

Osorio D. E.; Montoya P. G.; Bastida, J. 2009. Caracterización fitoquímica de una fracción de biflanoides de Garcinia madruno: su inhibición de la oxidación de LDL humana y su mecanimo de estabilización de especies radicalarias. Revista de La Facultad de Química Farmacéutica.16(3): 369-377.

Pinzón, I.M.P., G. Fischer y G. Corredor. 2007. Determinación de los estados de madurez de la gulupa (Passiflora edulis Sims.). Agronomía Colombiana. 25(1), 83- 95. Disponible en: http://www.empresario.com.co/recursos/p age_flip/MEGA/mega_gulupa/files/ficha%20 gulupa.pdf

Tijburg, L.; Wiseman, S.; Meijer, G.; Weststrate, J. 1997. Effects of green tea, black tea and dietary lipophilic antioxidants on LDL oxidazability and atheriosclerosis in hypercholesterolaemic rabbits. Atheriosclerosis. 135(1): 33-47.

Stinco, C.; Baroni, M.; Naranjo, R.; Wunderlin, D.; Herededia, F.; Meléndez, A.; Vicario, I. 2015. Hydrophilic antioxidant compounds in orange juice from different fruit cultivars: Composition and antioxidant activity evaluated by chemical and cellular based (Saccharomyces cerevisiae) assays. Journal of Food Composition and Analysis. 37: 1-10.

Rodríguez, M.; Garzón, G.; Peña, C.; Huertas, B. 2012. Guía para la obtención de productos procesados de uchuva, tomate de árbol y granadilla. Corporación colombiana de investigación agropecuaria (Corpoica). Bogotá, Colombia. Primera Edición. pp. 5-16.

Garza, S. 1998. Caracterización reológica y microbiológica y cinética de deterioro en cremogenados de melocotón. Servei de publicacions. Universitat de Lleida.

Horwits, W. 2000. Official methods of analysis of AOAC International, 17th Edition. AOAC International. USA.

Osorio, M.O. 2008. Influencia de tratamientos térmicos en la calidad y estabilidad del puré de fresa (Fragaria ananassa, cv Camarosa). Tesis doctoral Universidad Politécnica de Valencia. Departamento de Tecnología de Alimentos. Valencia España.

Rodríguez, M.; De Lira, C.; Hernández, E.; Cornejo, M.; Palacios A.; Rojas, I.; Reynoso, R.; Quintero, L.; Del Real, A.; Zepeda, T.; Muñoz, C. 2007. Physicochemical Characterization of Nopal Pads (Opuntia ficus indica) and Dry Vacuum Nopal Powders as a Function of the Maturation. Plant Foods Hum Nutr, Vol 62:107–112.

Jimenez, A.M.; Sierra, C.C.; Rodríguez- Pulido, F.J.; González-Miret, M.L.; Heredia, F.J.; Osorio, C. 2011. Physicochemical characterisation of gulupa (Passiflora edulisSims. fo edulis) fruit from Colombia during the ripening. Food Research International. Vol 44: 1912-1918.

S. PETURSSON. Diarylmethyl Ethers for the Protection of Polyols. J. Chem. vol. 2013, No. 1, August 2013, p. 1–10.

TSUJII, S. Kawano, S. Tsuji, H. Sawaoka, M. Hori and R. N. DuBois. Cyclooxygenase Regulates Angiogenesis Induced by Colon Cancer Cells. Cell. Vol. 93, No. 5, May 1998, p. 705-716.

ADINOLFI, G. Barone, A. Iadonisi and M. Schiattarella. An easy approach for the acetylation of saccharidic alcohols. Applicability for regioselective protections. Tetrahedron Lett. Vol. 44, No. 25, June 2003, p. 4661-4663.

BERANEK and H. Hrebabecký. Acetylation and cleavage of purine nucleosides. Synthesis of 6-azauridine, 5-fluorouridine, and 5-methyluridine. Nucleic Acids Res. Vol. 3, No. 5, May 1976, p. 1387-1399.

MOFFET and H. B. Anderson. Acetylation of 17a-Hydroxy Steroids. J. Am. Chem. Soc. Vol. 76, No. 5, February 1954, p. 747-749.

ROWELL Acetylation of natural fibers to improve performance. Mol. Cryst. Liq. Cryst. Vol. 418, No. 1, January 2004, p. 153– 164.

MIZUNO and M. Misono. Heterogeneous Catalysis. Chem. Rev. Vol. 98, No. 1, February 1998, p. 199–218.

MOJTAHEDI, M. Saeed, A. M. Heravi and F. K. Behbahani. Additive-Free Chemoselective Acylation of Amines and Thiols. Monatsh. Chem. Vol. 138, No. 1, January 2007, p. 95–99.

BJERGLUND, A. T. Lindhardt and T. Skrydstrup. Palladium-Catalyzed NAcylation of Monosubstituted Ureas Using Near-Stoichiometric Carbon Monoxide. J. Org. Chem. Vol. 77, No. 8, March 2012, p. 3793?3799

ISHIHARA, M. Kubota, H. Kurihara and H. Yamamoto, Scandium Trifluoromethanesulfonate as an Extremely Active Lewis Acid Catalyst in Acylation of Alcohols with Acid Anhydrides and Mixed Anhydrides. J. Org. Chem. Vol. 61, No. 14, July 1996, p. 4560-4567.

CARRIGAN, D. A. Freiberg, R. C. Smith, H. M. Zerth and R. S. Mohan. Simple and Practical Method for Large-Scale Acetylation of Alcohols and Diols Using Bismuth Triflate. Synthesis. Vol. 33, No. 14, August 2001, p. 2091-2094.

CHAKRABORTI and R. Gulhane. Bismuth Oxide Perchlorate as a Highly Efficient Catalyst for Heteroatom Acylation Under Solvent-Free Conditions. Synlett. Vol. 12, No. 12, July 2003, p. 1805–1808.

YOON, S. M. Lee, J. H. Kim, H. J. Cho, J. W. Choi, S. H. Lee and Y. S. Lee. Polymersupported gadolinium triflate as a convenient and efficient Lewis acid catalyst for acetylation of alcohols and phenols. Tetrahedron Lett. Vol. 49, No. 19, May 2008, p. 3165–3171.

CHICHE, A. Finiels, C. Gauthier, P. Geneste, J. Graille and D. Ploch. Friedel- Crafts Acylation of Toluene and p-Xylene with Carboxylic Acids Catalyzed by Zeolites. J. Org. Chem. Vol. 51, No. 11, July 1986, p. 2128-2130.

RANU, S. S. Dey and A. Hajra. Highly efficient acylation of alcohols, amines and thiols under solvent-free and catalyst-free conditions. Green Chem. Vol. 5, No. 1, January 2003, p. 44–46.

DAS, K. A. Reddy, V. L. N. R. Krowidi and K. Mukkanti. InCl3 as a powerful catalyst for the acetylation of carbohydrate alcohols under microwave irradiation. Carbohydr. Res. Vol. 340, No. 7, May 2005, p. 1387-1392.

GHOLAP, K. Venkatesan, T. Daniel, R. J. Lahoti and K. V. Srinivasan. Ultrasound promoted acetylation of alcohols in room temperature ionic liquid under ambient conditions. Green Chem. Vol. 5, No. 20, October 2003, 693–696.

VALDEZ-ROJAS, H. Ríos-Guerra, A. Ramírez-Sánchez, G. García-González, C. Álvarez-Toledano, J. López-Cortés, R. A. Toscano and J. G. Penieres-Carrillo. A study of the Willgerodt–Kindler reaction to obtain thioamides and ?-ketothioamides under solvent-less conditions. Can. J. Chem. Vol. 90, No. 7, March 2012, p. 567- 573.

LIU, L. Liu, Y. Lu and Y. Q. Cai. An imidazolium tosylate salt as efficient and recyclable catalyst for acetylation in ionic liquid. Monatsh. Chem. Vol. 139, No. 6, September 2008, p. 633-638.

MACHADO, T. L. G. Lemos, M. C. de Mattos, M. C. F. de Oliveira, G. de Gonzalo, V. Gotor-Fernández and G. Gotor. Immobilized Manihot esculent a preparation as a novel biocatalyst in the enantioselective acetylation of racemic alcohols. Tetrahedron: Asymmetry. Vol. 19, No. 12, May 2008, p. 1419-1424.

ORTEGA, F. X. Domínguez, A. Rosas, G. Penieres, J. G. López and M. C. Ortega. An expedient approach to enhance Mizoroki– Heck coupling reaction by infrared irradiation using palladacycle compounds. Appl. Organomet. Chem. Vol. 29, No. 8, June 2015, p. 556 -560.

S. Y. Chan, W. S. Choo, D. J. Young, and X. J. Loh, “Pectin as a Rheology Modifier: Origin, Structure, Commercial Production and Rheology,” Carbohydr. Polym., 2016.

T. Í. S. Oliveira et al., “Optimization of pectin extraction from banana peels with citric acid by using response surface methodology,” Food Chem., vol. 198, pp. 113–118, 2016.

E. N. Medellín et al., “Valoración de residuos agroindustriales - frutas- en Medellín y el sur del Valle de Aburrá, Colombia,” Rev. Fac. Nac. Agron., vol. 61, pp. 4422–4431, 2008.

M. Pagliaro et al., “Pectin Production and Global Market,” Agro Food Ind. Hi Tech, vol. 27, pp. 17–20, 2016.

J. Thibault and M. Ralet, “ARTICLE IN PRESS Effect of extraction conditions on some physicochemical characteristics ´ e’’ and ‘“Mango”’ mango peels of pectins from ‘‘Ame,” vol. 22, pp. 1345–1351, 2008.

B. R. Thakur et al., “Chemistry and uses of pectin — A review Chemistry and Uses of Pectin — A Review”, vol. 8398, 2017.

Bochek, A. M., Zabivalova, N. M., & Petropavlovskii, G. A. Determination of the Esterification Degree of Polygalacturonic Acid. Russian Journal of Applied Chemistry, vol. 74, pp. 796– 799, 2001.

X. Huang, D. Li, and L. jun Wang, “Characterization of pectin extracted from sugar beet pulp under different drying conditions,” J. Food Eng., vol. 211, pp. 1–6, 2017.

U. Kalapathy and A. Proctor, “Effect of acid extraction and alcohol precipitation conditions on the yield and purity of soy hull pectin,” vol. 73, pp. 393–396, 2001.

J. Mierczy?ska, J. Cybulska, and A. Zdunek, “Rheological and chemical properties of pectin enriched fractions from different sources extracted with citric acid,” Carbohydr. Polym., 2017.

N. H. Siddiqui, I. Azhar, and M. F. Saleem, “Influence of type of inorganic acid yield of pectin from different fruit peels and effect on sensory attribute of pudding made with extracted pectin”, 2016.

Cristiane, C., Carmen, L. Acid extraction and physicochemical characterization of pectin from cubiu (Solanum sessiliflorum D.) fruit peel. Food Hydrocolloids, vol. 86, pp. 193-200, 2019.

Beli R. Thakur, Rakesh K. Singh, Avtar K. Handa & Dr. M. A. Rao. Chemistry and uses of pectin — A review, Critical Reviews in Food Science & Nutrition, vol. 37, pp. 47-73, 1997.

M. C. C. Ju and E. E. G. Rojas, “Density and Kinematic Viscosity of Pectin Aqueous Solution,” J. Chem. Eng. Data, vol. 54, pp. 662–667, 2009.

Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R., López-Franco, Y., y Rascón-Chu, A. Pectina y materiales compuestos a base de pectina: más allá de la textura de los alimentos. Moléculas (Basilea, Suiza), vol. 23, pp. 942, 2018.

Kurita, O., Fujiwara, T., & Yamazaki, E. Characterization of the pectin extracted from citrus peel in the presence of citric acid. Carbohydrate Polymers, vol. 74, 725–730, 2008.

FAO (2018). Base de datos de la Organización de las Naciones Unidas para la Alimentación y la Agricultura. Recuperado de http://www.fao.org/faostat/es/#data.

A.M. Orozco. Cadena productiva del plátano departamento de Casanare 2015. 2015. Secretaria de Agricultura Ganadería y Medio Ambiente. Colombia.

L. Álvarez-Jubete, E.K. Arendt y E. Gallagher. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. 2009. International Journal of Food Sciences and Nutrition, September; 60(S4): 240-257.

V.D. Capriles, F. G. dos Santos y J.A. Areas. Gluten-free breadmaking: Improving nutritional and bioactive compounds. 2016. Journal of Cereal Science 67. p: 83-91.

C. Marco y C.M. Rosell. Breadmaking performance of protein enriched, gluten-free breads. 2008. Eur Food Res Technol. 227:1205–1213.

N. O’Shea, C. Roble, E. Arendt y E. Gallagher. Modelling the effects of orange pomace using response surface design for gluten-free bread baking. 2015. Food Chemistry. (166). P: 223–230.

L.S. Sciarini, P.D. Ribotta, A.E. León y G.T. Pérez. Incorporation of several additives into gluten free breads: Effect on dough properties and bread quality. 2012. Journal of Food Engineering. (111). P: 590–597.

J.C. Lucas, V.D. Quintero y C.A. Cardenas. Caracterización de harina y almidón obtenidos a partir de plátano guineo AAAea (Musa sapientum L.). 2013. Acta Agron., (62). 2, p. 83- 96.

T. M. de Oliveira, M.R. Pirozi y J.T Borges. Elaboração de pão de sal utilizando farinha mista de trigo e linhaça. Alim. Nutr., Araraquara v.18, n.2, p. 141-150.

A.O.A.C. USA: Official Methods of Analysis Association of Official Analytical Chemists. 2005. Methods 925.10, 923.03, 991.42, 922.06 y 960.52.

C. M. Bryant y B. R. Hamaker. Effect of Lime on Gelatinization of Corn Flours and Starch. 1997 . Cereal Chemistry. 74 (2): p. 171- 175.

R.V. da Mota, F.M. Lajolo, C. Ciacco y B.R. Cordenunsi. Composition and functional properties of banana flour from different varieties. 2000. Starch/Starke 52. Nr. 2-3, p. 63- 68.

A. Carbajal. Calidad nutricional de los huevos y relación con la salud. 2006. Revista de Nutrición Práctica 10: p.73-76.

J. Montoya, V.D. Quintero y J.C. Lucas. Evaluación fisicotermica y reológica de harina y almidón de plátano dominico hartón (musa paradisiaca ABB). 2014. Temas agrarios. 19:(2) p.214 – 233.

O. Gibert, D. Dufour, A. Giraldo, T. Sanchez, M. Reynes y J.P. Diaz. Differentiation between Cooking Bananas and Dessert Bananas. 1. Morphological and Compositional Characterization of Cultivated Colombian Musaceae (Musa sp.) in Relation to Consumer Preferences. 2009. J. Agric. Food Chem. 2009, 57, 7857–7869.

C. Reyes, J. Milán, O. Rouzaud, J.A. Garzón y R. Mora. Descascarillado, suavización extrusión: alternativa tecnológica para mejorar la calidad nutricional del garbanzo (Cicer arietinum L.). 2002. Agrociencia 36: 181-189.

E. Sandoval, A. Lascano, G. Sandoval. Influencia de la sustitución parcial de la harina de trigo por harina de quinoa y papa en las propiedades termomecánicas y de panificación de masas. Revista U.D.C.A Actualidad & Divulgación Científica 15 (1): 199 - 207

Q.B. Ding, P. Ainsworth, G. Tucker y H. Marson. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. 2005. Journal of Food Engineering 66. p. 283–289.

M. Hernandez, J.G. Torruco, L. Chel y D. Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. 2008. Ciênc. Tecnol. Aliment., Campinas, 28(3): 718-726.

H. H. Mardhian, H. C. Ong, Renew Sustain. Energy Rev., 67 (2017) 1225-1236

G. Knothe, L. F. Razon, Energy Combust. 58 (2017) 36-59.

A. Oasmaa, S. Czernik, Energy Fuel 13 (1999) 914-921.

D.C. Elliott, T.R. Hart, Energy Fuels 23 (2009) 631–637.

Y.K. Hong, D. W. Lee, Appl. Catal. B 150-151 (2014) 438-445.

R. C. Runnebaum, T. Nimmanwudipong, Catal. Lett 141 (2011) 817-820.

D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G,D. Stucky, J. Am. Chem. Soc. 120 (1998) 6024- 6036.

J. Croma, M. Jaronic, Biuletyn WAT 55 (2006) 217-235.

Sadeghian S. Evaluación de la fertilidad del suelo para una adecuada nutrición de los cultivos. Caso café. Suelos Ecuatoriales, Vol. 41, No. 1, 2010, p. 46-64.

Gutiérrez J. and Cardona W. Potential for the use of chemical properties as indicators of soil quality. A review. Revista Colombiana de Ciencias Hortícolas, Vol. 11, 2017, p. 450-458.

Schoenholtz, S.H., Van Miegroet H. and Burger J. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. Forest Ecology and Management, Vol. 138, 2000, p. 335-356.

Del Pozo J, González E, Cásares R, Castillo A, Meneses H. Altura de colocación de trampas de interceptación y su efecto sobre la captura de Hypothenemus hampei (Ferrari). Entomotrópica, Revista interna-cional para el estudio de la entomología tropical, Vol. 26, No.1, 2011, p. 39-46.

Wilke B-M. Determination of chemical and physical soil properties. In: Soil Biology, Vol. 5, Manual for Soil Analysis, R. Margesin, and F. Shinner (Editors), Springer Verlag Berlin- Heildelberg, 2005, p. 47-95.

Gilabert de Brito J, Arrieche Luna I, León Rodríguez M y López de Rojas I. Análisis de suelos para diagnóstico de fertilidad. Manual de métodos y procedimientos de referencia. Maracay, VE, Instituto Nacional de Investigaciones Agrícolas Centro Nacional de Investigaciones Agropecuarias 2015, p. 215.

Codazzi IIGA. Métodos analíticos del laboratorio de suelos. Bogotá, Subdirección de Agrología, VI Edición, 2006, p.449.

Bremner J. Nitrogen-total. In: Methods of Soil Analysis, part 3. D.L. Sparks (editor). SSSA Book Series No. 5, 1996, p. 1085-1121.

Murphy J. and Riley J.P. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, Vol. 27, 1962, p. 31-36.

Sims, J.R. and V.A. Haby. 1971. Simplified colorimetric determination of soil organic matter. Soil Science, Vol. 112, No. 2, p. 137-141

Dilly O and Munch J-C. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnus glutinosa (l.) Gaertn.) forest. Soil Biology and Biochemistry, Vol. 28, 1996, p. 1073-1081.

Uzcategui, X: Propiedades bioquímicas en los suelos cafetaleros de los Altos Mirandinos en diferentes épocas climáticas (lluvia y seca). IVIC, Postgrado en Ecología, Tesis M.Sc., 2009, p. 98.

Paolini, J. Actividad microbiológica y biomasa microbiana en suelos cafetaleros de los Andes venezolanos. Terra Latinoamericana, Vol. 36, No. 1, 2018, p. 13-22.

Sadeghian S. y González H. Alternativas generales de fertilización para cafetales en la etapa de producción. Avances Téccnicos Cenicafé, No. 424, 2012, p. 1-8.

Cortés A. y Malagón D. Los levantamientos de suelos y sus aplicaciones multidisciplinarias. Centro Interamericano de Desarrollo Integral de Aguas y Tierras (CIDIAT), Mérida, 1983, p. 409.

Martinez J. Manual técnico para el manejo de la fertilización en suelos cafetaleros. Proyecto de investigación patrocinado por PAST DANIDA a través de FAITAN FUNICA 2013, p. 32.

Narváez H, Bustamante Barrera I. y Combatt E. Estimación de la salinidad en suelos del delta del río Sinú en Colombia, mediante modelos de regresión lineal mútiple. Idesia (Arica), Vol. 32, 2014, p. 81-90.

Luo, S.J., Chen, R.Y., Huang, L., Liang, R.H., Liu, C.M., y Chen, J. Investigation on the influence of pectin structures on the pasting properties of rice starch by multiple regression. Food Hydrocolloids, 2017; 63: 580–584.

Chasquibol, N., Arroyo, E., y Morales, J.C. Extracción y caracterización de pectinas. Ingeniería Industrial, 2008; (26), 175– 199. Obtenido de http://www.redalyc.org/articulo.oa?id=3374284 92010

Gómez, J.F. Factibilidad técnica del aislamiento y la caracterización de pectina cítrica para el sector agroindustrial. [Trabajo de Grado]. Medellín: Corporación Universitaria Lasallista, Facultad de Administración, 1998.

Heitman, D.W.; Hardman, W.E. y Cameron I.L. Dietary supplementation with pectin and guar gum on 1,2-dimetilhidrazine-induced colon carcinogenesis in rats. Carcinogenesis 13, 1992.

Obando, F., Mejía, C. y Duque, A. Determinación de la fibra dietaria extraída de la cidra Sechium edule (Jacq.) Sw. Revista Facultad Nacional de Agronomía, Medellín, 2014; 67(2): 937-939.

Pérez, L.A.B., Palacios, G.B., Castro, B.A.L. Sistema Mexicano de Alimentos Equivalentes. Fomento de Nutrición y Salud Ogali. México, D.F. 2008; 3ª Ed. 108 p.

Modgil, M., Modgil R. y Kumar, R. Carbohydrate and mineral content of chayote (Sechium edule) and bottle gourd (Lagenaria siceraria). Journal of Human Ecology, 2004; 15(2): 157-159.

Mejía-Doria, C.M., Duque-Cifuentes, A.L., Garcia-Alzate, L.S., Giraldo-Castaño, Y.M. y Padilla-Sanabria, L. Caracterización fisicoquímica de geometrías de cidra (Sechium edule (Jacq.) Sw.) impregnadas a vacío con maracuyá. Agronomía Colombiana, 2016; 34(1Supl.), S1211- S1214.

Avendaño, C., Cadena, J., Arévalo, M., Campos, E., Cisnero, V. y Aguirre, J. Las variedades del chayote mexicano, recurso ancestral con potencial de comercialización. Grupo interdisciplinario de investigación Sechium edule, México, A.C. 2010, 47 pp.

Lira, R. 1996. Chayote: Sechium edule (Jacq.) Sw. IPGRI. En: http://www.ipgri.cgiar.org/publications/pdf/355. pdf; abril de 2016.

Alvarenga-Venutolo S, Abdelnour-Esquivel A, Villalobos-Aránbula V. Conservación in vitro de chayote (Sechium edule). Agronomía Mesoamericana, 2007; 18 (1): 65-73.

Guevara-Hernández, F., Rodríguez- Larramendi, L., Rosales-Esquinca, M.A., Ortiz- Pérez, R., Gómez-Castro, H., Aguilar-Jiménez, C.E., Pinto-Ruiz, R. Criterios de manejo local del cultivo de chayote (Sechium edule (Jacq.) Sw.) en zonas rurales de Chiapas, México. Cultivos Tropicales, 2014; 35(2): 5-13.

Montes, C., & Gómez, A.A. 2011). Valoración de la cidra papa (Sechium edule) como alternativa de alimentación y recuperación de vínculos con el campo. Biotecnología en el Sector Agropecuario y Agroindustrial, 2011; 9(2): 198-209.

Codex Alimentarius CAC/RCP 53. Codex Alimentarius International Foods Standards. http://www.codexalimentarius.org/, 2003.

Vriesmann, L., Teófilo, R. and De Oliveira, C. 2011. Optimization of nitric acid mediated extraction of pectin from cacao pod husks (Theobroma cacao L.) using response surface methodology. Carbohydrate Polymers. 84(4): 1230- 1236.

Mendoza, L., Jiménez, J. y Ramírez, M. (2017). Evaluación de la pectina extraída enzimáticamente a partir de las cáscaras del fruto de cacao (Theobroma cacao L.). Revista U.D.C.A Actualidad & Divulgación Científica, 20(1), 131–138. Retrieved from http://www.scielo.org.co/pdf/rudca/v20n1/v20n1 a15.pdf

Marsiglia, D., Ojeda, K., Ramirez, M. y Sánchez, E. Pectin extraction from cocoa pod husk (Theobroma cacao L.) by hydrolysis with citric and acetic acid. International Journal of Chem Tech Research, 2016; 9(7):497-507.

Barazarte, H., Sangronis, E. & Unai, E. La cáscara de cacao (Theobroma cacao L.): una posible fuente comercial de pectinas. Archivos Latinoamericanos de Nutrición, 2008; 58(1): 64- 70.

Cerón-Salazar, I. y Cardona-Alzate, C. Evaluación del proceso integral para la obtención de aceite esencial y pectina a partir de cáscara de naranja. Ingeniería y Ciencia, 2011; 7(13): 65-86.

Chaparro S., Márquez R., Sánchez J., Vargas M. y Gil J. Extracción de pectina del fruto del higo (Opuntia ficus indica) y su aplicación en un dulce de piña. Revista UDCA Actualidad & Divulgación Científica, 2015; 18(2): 435-443.

BERLANGA, M. Síntesis y caracterización de nanomateriales 0D, 1D y 2D. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química Inorgánica Madrid. Recuperado de: https://repositorio.uam.es/bitstream/han dle/10486/660464/berlanga_mora_isador a.pdf?sequence=1.

SCHÜNEMANN, S, DODEKATOS, G AND TÜYSÜZ, H. Mesoporous silica supported Au and AuCu nanoparticles for surface plasmon driven glycerol oxidation. Chemistry of Materials, 27(22), p. 7743- 7750. Recuperado de: https://pubs.acs.org/doi/pdf/10.1021/acs.c hemmater.5b03520.

EASTOE, J, HOLLAMBY, M AND HUDSON, L. Recent advances in nanoparticle synthesis with reversed micelles. Advances in Colloid and Interface Science, 128-130, pp.5-15.

A. K. Geim, Graphene: status and prospects. Science 324 (2009) 1530–1534.

J. J. Liu, X. L. Zhang, Z. X. Cong, Z. T. Chen, H. H. Yang, G. N. Chen, Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites, Nanoscale (2013) 1810?1815.

J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. LI, One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light, New J. Chem 36 (2012) 97–101.

Y. Guo, L. Zhang, S. Zhang, Y. Yang, X. Chen, M. Zhang, Fluorescent carbon nanoparticles for the fluorescent detection of metal ion, Biosensors and Bioelectronics 63 (2015) 61-71.

M. Kanemoto, H. Sekiguchi, K. Yamane, H. Okada, A. Wakahara, Eu3+ luminescence properties of Eu- and Mg-codoped AlGaN, J. Lumin. 166 (2015) 60–66.

C. A.T. Toloza, S. Khan, R. L. D. Silva, E. C. Romani, D. G. Larrude, S. R.W. Louro, F. L. Freire Júnior, R. Q. Aucélio, Photoluminescence suppression effect caused by histamine on aminofunctionalized graphene quantum dots with the mediation of Fe3+, Cu2+, Eu3+: Application in the analysis of spoiled tuna fish, Microchemical Journal 133 (2017) 448–459.

S. A Waksman, H. A Lechevalier, Neomycin, a new antibiotic active against streptomycinresistant bacteria, including tuberculosis organisms, Science 109 (1949) 305–307.

C. H Clark, Toxicity of aminoglycoside antibiotics. Mod Vet Pract 58 (1977) 594–598.

C. Xiao, J. Liu, A. Yang, H. Zhao, Y. He, X. Li, Z. Yuan, Colorimetric determination of neomycin using melamine modified gold nanoparticles, Microchim Acta 182 (2015) 1501–1507.

G. D. Zhou, F. Wang, H. L. Wang, S. Kambam, X. Q. Chen, Colorimetric and fluorometric detection of neomycin based on conjugated polydiacetylene supramolecules, Macromol Rapid Commun 34 (2013) 944–948.

S. Hamnca, L. Phelane, E. Iwuoha, P. Baker, Electrochemical Determination of Neomycin and Norfloxacin at a Novel Polymer Nanocomposite Electrode in Aqueous Solution, Analytical Letters 50 (2017) 1887–1896.

A. L. Huidobro, A. Garcia, C. Barbas, Rapid analytical procedure for neomycin determination in ointments by CE with direct UV detection, J Pharm Biomed Anal 49 (2009) 1303–1307.

De-Los-Santos-Alvarez N, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2009) SPR sensing of small molecules with modified RNA aptamers: detection of neomycin B. Biosens Bioelectron 24:2547–2553

Y. Chen, X. Hu, X. Xiao, Sample preparation for determination of neomycin in swine tissues by liquid chromatography-fluorescence detection, Analytical Letters 43 (2010) 2496–2504.

S. Khan, E. M. Miguel, C. F de Souza, Thioglycolic acid-CdTe quantum dots sensing and molecularly imprinted polymer based solid phase extraction for the determination of kanamycin in milk, vaccine and stream water samples. Sensors Actuators B Chem, 246 (2017) 444–454.

HUSSAIN H., KROHN K., AHMAD V. G., MIANA G. A., GREEND I. R. Lapachol: an overview. Arkivoc 2, 2007, p. 145-171.

ARAÚJO E. L., ALENCAR J. R. B., NETO P. JR. Lapachol: segurança e eficácia na terapêutica. Revista Brasileira de Farmacognosia, 2002, v. 12, p. 57-59.

GUIRAUD P., STEIMAN R., CAMPOSTAKAKI G. M., SEIGLE-MURANDI F., DE BUOCHBERG M. S. Comparison of antibacterial and antifungal activities of lapachol and beta-lapachone. Planta Medica, 1994, v. 60, n. 4, p. 373-374.

LI C. J., ZHANG L. J., DEZUBE B. J., CRUMPACKER C. S., PARDEE A. B. Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proceedings of the National Academy of Sciences of the United States of America, 1993, v. 9, n. 5, p. 1839-1842.

LIMA N. M. F., CORREIA C. S., FERRAZ P. A. L., PINTO A. V., PINTO, M. C. R. F., SANTANA A. E. G., GOULART M. O. F. Molluscicidal Hydroxynaphthoquinones and Derivatives: Correlation Between their Redox Potential and Activity Against Biomphalaria glabrata. Journal of the Brazilian Chemical Society, 2002, v. 13, n. 6, p. 822-829.

STEINERT J., KHANLAF H., RIMPLER M. HPLC separation and determination of naphtha [2,3 b]furan-4,9-diones and related compounds in extracts of Tabebuia avellanedae (Bignoniaceae). J. Chromatogr. A 693, 1995, p. 281–287.

NGAMENI E., TONLE I. K., NANSEU C. P., WANDJI R. Voltammetry Study of 2-Hydroxy-3 isopropenyl-1,4-naphthoquinone Using a Carbon Paste Electrode. Electroanalysis 12, 2000, p. 847-852.

OLIVEIRA-BRETT A. M., GOULART M. O. F., ABREU F. C. Reduction of lapachones and their reaction with L-cysteine and mercaptoethanol on glassy carbon electrodes, Bioelectrochem. 56, 2002, p. 53– 55.

ABREU F. C., GOULART M. O. F., BRETT A. M. O. Reduction of Lapachones in Aqueous Media at a Glassy Carbon Electrode. Electroanalysis 14, 2002, p. 29-34.

TALLMAN D. E., PETERSEN S. L. Composite electrodes for electroanalysis: Principles and applications. Electroanalysis 2, 1990, p. 499- 510.

SEMAAN F. S., PINTO E. M., CAVALHEIRO E. T. G., BRETT C. M. A. A graphitepolyurethane composite electrode for the analysis of furosemide. Electroanalysis 20, 2008, p. 2287- 2293

BALBÍN-TAMAYO A. I., RISO L. S., PÉREZGRANATES A., FARIAS P. A. M., ESTEVA-GUAS A. M., TAMACA I. Electrochemical Characterization a New Epoxy Graphite Composite Electrode as Transducer for Biosensor, Sensors & Transducers 202, 2016, p. 59-65.

LIMA J. L. X., PERÉZ-GRAMATGES, AUCÉLIO R. Q., DA SILVA A R. Improved quantum dots fluorescence quenching using organized medium: A study of the effect of naphthoquinones aiming the analysis of plant extracts. Microchem. J. 110, 2013, p. 775–782.

ALMEIDA J. M. S., BALBIN-TAMAYO A. I., TOLOZA C. A. T., FIGUEIRA I. D. O., PÉREZGRAMATGES A., DA SILVA A. R., AUCÉLIO R. Q. Voltammetric determination of lapachol in the presence of lapachones and in ethanolic extract of Tabebuia impetiginosa using an epoxy-graphite composite electrode. Microchemical Journal, 2017, v. 133, p. 629- 637.

CABRAL M. F., DE SOUZA D., ALVES C. R., MACHADO S. A. S. Estudo do comportamento eletroquímico do herbicida ametrina utilizando a técnica de voltametria de onda quadrada. Ecl. Quim, 2003, v. 28, n. 2, p. 41-47.

Ministerio de Salud y Protección Social (22 de diciembre de 2015) Decreto 2467/2015 por el cual se reglamentan los aspectos de que tratan los artículos 3, 5, 6 y 8 de la Ley 30 de 1986. Bogotá, D.C., 16p.

Brenneisen, R. (2006) Chemistry and Analysis of Phytocannabinoids and Other Cannabis Constituents. En M. ElSohly (Ed.), Marijuana and the Cannabinoids (págs. 17-49). New Jersey: Humana Press Inc.

Casey Nicholas. (Marzo 9 del 2017). Colombia ve una oportunidad en la marihuana, después de décadas de combatirla. The New York Times. Recuperado de https://www.nytimes.com/es/2017/03/09/colo mbia-marihuana-legalizacion-estrategia/.

V. Devi and Khanam, “Comparative study of different extraction processes for hemp (Cannabis sativa) seed oil considering physical and chemical and industrial-scale economic aspects”, J. Clan. Prod.,2018.

n. Martinez, «production of biofuels from the coffee sub-products» IVsymposium of applied chemistry, 2009.

A. F. García Muñoz y C. E. Riaño Luna, «removing cellulose from the spent ground coffee» CENICAFE, pp. 105-214, 1999.

L. F. Ballesteros, J. A. Teixeira y S. I. Mussatto, «Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin» Food Bioprocess Technol, p. 3493–3503, 2014.

D. Lachos-Perez, F. Martinez-Jimenez, C.A. Rezende, G. Tompsett, M. Timko, T. Forster-Carneiro, «Subcritical waterhydrolysis of sugarcane bagasse: An approachon solid residues characterization» pp. 1-4, 2015.

Davila J. Rosenberg M., Cardona C. A biorefinery for efficient processing and utilization of spent pulp of Colombian Andes Berry (Rubus glaucus Benth.): Experimental, techno-economic and environmental assessment. Bioresource Technology. 2017; 223: 227-236.

Contreras-Calderón, José, Lilia Calderón- Jaimes, Eduardo Guerra-Hernández, and Belén García-Villanova. 2011. “Antioxidant Capacity, Phenolic Content and Vitamin C in Pulp, Peel and Seed from 24 Exotic Fruits from Colombia.” Food Research International 44(7): 2047–53.

Restrepo, B. Luis Fernando; Urango, M. Luz Amparo; Deossa, R. Gloria Cecilia. 2014. “Conocimiento Y Factores Asociados Al Consumo de Frutas Por Estudiantes Universitarios de La Ciudad de Medellín, Colombia.” Revista Chilena de Nutrición.

MADR, Ministerio de Agricultura y Desarrollo Rural. 2012. Anuario Estadistico de Frutas Y Hortalizas 2007 - 2011.

Ivanovic, Jasna et al. 2014. “Antioxidant Properties of the Anthocyanin-Containing Ultrasonic Extract from Blackberry cultivar ‘Balanska Bestrna.’” Industrial Crops and Products 53: 274–81.

Ceron, I. X., J. C. Higuita, and C. A. Cardona. 2012. “Design and Analysis of Antioxidant Compounds from Andes Berry Fruits (Rubus Glaucus Benth) Using an Enhanced-Fluidity Liquid Extraction Process with CO 2 and Ethanol.” Journal of Supercritical Fluids 62: 96–101.

Azofeifa, Gabriela et al. 2015. “Pasteurization of Blackberry Juice Preserves Polyphenol-Dependent Inhibition for Lipid Peroxidation and Intracellular Radicals.” Journal of Food Composition and Analysis 42: 56–62.

Osorio, Coralia et al. 2012. “Chemical Characterisation of Anthocyanins in Tamarillo (Solanum Betaceum Cav.) and Andes Berry (Rubus Glaucus Benth.) Fruits.” In Food Chemistry, , 1915–21.

Giusti, M. y Wrolstad, R. 2001. “Characterization and Measurement of Anthocyanins by UV- Visible Spectroscopy.” Current Protocols in Food Analytical Chemistry (August 2016): 19–31.

Singleton, V L, and Joseph A Rossi Jr. 1965. “Colorimetry of Total Phenolics with Phosphomolybdic- Phosphotungstic Acid Reagents.” American Journal of Enology and Viticulture 16(3): 144–58.

Maran, J. Prakash, B. Priya, and S. Manikandan. 2014. “Modeling and Optimization of Supercritical Fluid Extraction of Anthocyanin and Phenolic Compounds from Syzygium Cumini Fruit Pulp.” Journal of Food Science and Technology 51(9): 1938– 46.

CHUNG, K.T. Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, Vol. 34, No. 4, 2016, 233–261.

J?DRZEJCZAK, M., KAMI?SKA, A., WOJCIECHOWSKI, K. Discoloration of azo dyes, Schäffer acid and R salt derivatives, by microorganisms of activated sludge, CHEMIK, Vol. 66, No. 12, 2012, 1308-1313.

OLIVEIRA, D.F.M., BATISTA, P.S., MULLER, P.S., VELANI, V., FRANÇA, M.D., DE SOUZA, D.R., MACHADO, A. E. H. Evaluating the effectiveness of photocatalysts based on titanium dioxide in the degradation of the dye Ponceau 4R. Dyes and Pigments, Vol. 92, No. 1, 2012, 563–572.

MÁRQUEZ, M.G. Aplicación de procesos de fotocatálisis solar en la depuración de aguas residuales. Tesis doctoral. Universidad de Extremadura. 2013, 21–22.

KATSUMATA, H., KOIKE, S., KANECO, S., SUZUKI, T. Degradation of Reactive Yellow 86 with photo-Fenton process driven by solar light. Journal of Environmental Sciences, Vol. 22, No. 9, 2010, 1455–1461.

CHRISTENSEN, H., SEHESTED, K., CORFITZEN, H. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures, Journal of Physical Chemistry, Vol. 86, No. 9, 1982, 1588–1590.

International Coffee Organization, “Total production by all exporting countries,” 2016. [Online]. Available: http://www.ico.org/prices/poproduction. pdf. [Accessed: 20-Aug- 2017].

H. Moreno, I. Rodríguez, A. Ordóñez, C. Quijano, J. Pino, and N. Rojas, “Obtención De Cafeína a Partir De Café Verde Empleando Co 2 Supercrítico,” vol. XIX, no. C, pp. 47–49, 2007.

M. Ferrari, F. Ravera, E. De Angelis, F. S. Liverani, and L. Navarini, “Interfacial properties of coffee oils,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 365, no. 1–3, pp. 79–82, Aug. 2010.

K. Speer, N. Sehat, and A. Montag, “Fatty acids in coffee,” 15th Int. Colloq. Chem. Coffee, pp. 583–92, 1993.

P. M. A. de Oliveira, R. H. de Almeida, N. A. de Oliveira, S. Bostyn, C. B. Gonçalves, and A. L. de Oliveira, “Enrichment of diterpenes in green coffee oil using supercritical fluid extraction – Characterization and 17 comparison with green coffee oil from pressing,” J. Supercrit. Fluids, vol. 95, pp. 137–145, 2014.

H. Peredo-Luna, E. Palou-García, and A. López-Malo, “Aceites esenciales: métodos de extracción,” Temas Selectos de Ingeniería de Alimentos, vol. 3, no. 1. p. 8, 2009.

M. Mukhopadhyay, Natural Extracts Using Supercritical Carbon Dioxide, vol. 33. CRC Press, 2000.

Federación de Cafeteros, “Pergamino - ABC sobre la exportación de pasilla del café colombiano,” 2015. [Online]. Available: https://www.federaciondecafeteros.or g/pergaminofnc/ index.php/comments/abc_sobre_la _autorizada_exportacion_de_pasilla_d el_cafe_colombiano. [Accessed: 12- Mar-2017].

V. L. Singleton and J. A. Rossi Jr., “Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents,” Am. J. Enol. Vitic., vol. 16, no. 3, pp. 144–158, 1965.

Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a Free Radical Method to Evaluate Antioxidant Activity,” Food Sci. Technol., vol. 28, pp. 25–30, 1995.

J. Dávila, “Design of Biorefineries for High Value Added Products from Fruits Diseño de Biorefinerias para Productos de Alto Valor Agregado a partir de Frutas,” p. 369, 2015.

U?. Salg?n, S. Salg?n, D. D. Ekici, and G. Uluda?, “Oil recovery in rosehip seeds from food plant waste products using supercritical CO2 extraction,” J. Supercrit. Fluids, vol. 118, pp. 194–202, 2016.

I. Papamichail, V. Louli, and K. Magoulas, “Supercritical fluid extraction of celery seed oil,” J. Supercrit. Fluids, vol. 18, pp. 213–226, 2000.

H. S. Park et al., “Effects of cosolvents on the decaffeination of green tea by supercritical carbon dioxide,” Food Chem., vol. 105, no. 3, pp. 1011–1017, 2007.

A. Belbaki, W. Louaer, and A. H. Meniai, “Supercritical CO2 extraction of oil from Crushed Algerian olives,” J. Supercrit. Fluids, vol. 130, no. June, pp. 165–171, 2017.

S. A. O. Santos, J. J. Villaverde, C. M. Silva, C. P. Neto, and A. J. D. Silvestre, “Supercritical fluid extraction of phenolic compounds from Eucalyptus globulus Labill bark,” J. Supercrit. Fluids, vol. 71, pp. 71–79, 2012.

J. Baggenstoss, L. Poisson, R. Kaegi, R. Perren, and F. Escher, “Coffee roasting and aroma formation: Application of different time-temperature conditions,” J. Agric. Food Chem., vol. 56, no. 14, pp. 5836–5846, 2008.

J. A. Vignoli, M. C. Viegas, D. G. Bassoli, and M. de T. Benassi, “Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees,” Food Res. Int., vol. 61, pp. 279–285, 2014.

Roldán, G. & Ramírez, J. 2008. Fundamentos de limnología Neotropical. 2da. Ed. Medellín (Colombia): Editorial Universidad de Antioquia, Universidad Católica de Oriente y Academia Colombiana de CienciasACCEFYN.

Prat, N., Ríos, B., Acosta, R. & Rieradevall, M. 2009. Los macroinvertebrados como indicadores de calidad de las aguas, p. 631-654. In E. Domínguez & H.R. Fernández (eds.). Macroinvertebrados 23 bentónicos sudamericanos. Sistemática y biología. Fundación Miguel Lillo, Tucumán, Argentina.

Roldan, G. 2003. Bioindicación de la calidad del agua en Colombia: propuesta para el uso del método BMWP Col. Universidad de Antioquia.

Forero, L., Longo, M., Ramírez, J. & Chalar, G. 2014. Índice de calidad ecológica con base en macroinvertebrados acuáticos para la cuenca del río Negro (ICE RN-MAE), Colombia. Revista de Biología Tropical, vol. 62, núm. 2, pp. 233-247

CRA. 2014. Diagnóstico inicial para el ordenamiento del Embalse del Guájaro y la ciénaga de Luruaco.

Roldán, G. 1988. Guía para el estudio de los macroinvertebrados acuáticos del departamento de Antioquia. Ed Presencia Ltda. Fondo FEN-Colombia, Colciencias-Universidad de Antioquia, Bogotá.

Costa, C., Ide, S. & Simonka, C., 2006. Insectos Inmaduros. Metamorfosis e Identificación. m3m - Monografías 3er. Milenio. Vol. 5. S.E.A., CYTED & RIBES, Zaragoza, 233 pp.

Heckman, C. 2006. Encyclopedia of South American Aquatic Insects: Odonata - Anisoptera. Illustrated Keys to Known Families, Genera, and Species in South America. Dordrecht: Springer. 725 p

Pereira, D., Melo, A. & Hamada, H. 2007. Chaves de identificação para famílias e gêneros de Gerromorpha e Nepomorpha (Insecta: Heteroptera) na Amazônia Central. Neotropical Entomology 36(2):210-228.

APHA-AWWA-WPCF, 2005. Standard Methods for the examination of water and wastewater, 20th edition.

EPA. 2002. Guidelines for Ensuring and Maximizing the Quality, Objectivity, Utility, and Integrity, of Information Disseminated by the Environmental Protection Agency. Washington, 57 p

Garay, J., Ramirez, G., Betancourt, J., Marin, B., Cadavid, B., Panizzo, L., Lesmes,L., Sanchez, J. & Franco, A. 2003. Manual de Técnicas Analíticas para la Determinación de Parámetros Fisicoquímicos y Contaminantes Marinos: Aguas, Sedimentos y Organismos. INVEMAR, Santa Marta, 177p. (Serie Documentos Generales N° 13).

IDEAM. 2004. Guía para el monitoreo y seguimiento del agua. IDEAM, Bogotá. 37 p

Haase, R. & Nolte, U. 2008. The invertebrate species index (ISI) for streams in southeast Queensland, Australia.Ecological Indicators, 8, 599-613.

García-Alzate, C. Gutiérrez, L. & De la Parra, A. 2016. Embalse de El Guájaro: Diagnóstico ambiental y estrategias de rehabilitación. En M, Alvarado (Ed). Sur del Atlántico una nueva oportunidad. Bogotá, Colombia.

MEJIA, Gregory. Aproximación teórica a la biosorción de metales pesados por medio de microorganismos. Universidad CES, Medellín Colombia. 2006.p.78

CARDONA, Fernanda; CABAÑAS, Diana; ZEPEDA, Alejandro. Evaluación del poder biosorbente de cáscara de naranja para la eliminación de metales pesados, Pb (II) y Zn (II). Universidad Autónoma de Yucatán, 2013. p.2, 77,

DUQUE, Alba; MEJIA, Clara; GARCIA, Luz. La cidra Sechium edule (Jacq.) Sw. Una matriz modificable en la poscosecha. Universidad del Quindío, 2017. p.54

Montero, I. (2007). Cuantificación de Cr (VI), Cr (III) y Cr total, en un estudio de biosorción utilizando cáscara de naranja. Tesis de Licenciatura de Química. México

LESSA, Emanuele; MEDINA, Aline; RIBEIRO, Anderson; FAJARDO, André. Removal of multi-metals from water using reusable pectin/cellulose microfibers composite beads. 2017

MIRETZKY, P; FERNANDEZ, A. Elimination of Cr (VI) and Cr (III) from the aqueous solution by raw and modified lignocellulosic materials: a review. Elsevier. 2010.p.3

SHARMA, D; FOSTER, C. A preliminary examination of the hexavalent chromium adsorption using low cost adsorbents. Elsevier. 1994. p. 257-264

GARCES, Luz; COAVAS, Susana. Evaluación de la capacidad de adsorción en la cáscara de naranja modificada con quitosano para la remoción de Cr (VI) en aguas residuales. Universidad de Cartagena. 2012. p. 12

MEMON, Jamil; MEMON, Saima; BHANGER, Muhammad; TURKI, Adel; ALLEN, Geoffrey. Banana peel: A green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater. Elsevier. 2009.p.1 28

ACOSTA, Ismael; SANDOVAL, Patricia; BAUTISTA, Diana; HERNÁNDEZ, Nataly; CARDENAS, Juan. Bioadsorción de cromo (VI) por la cáscara de mamey (Mammea americana L.). Universidad Autónoma de San Luis Potosí. 2011.

EPA, “Livestock Anaerobic Digester Database,” Livestock Anaerobic Digester Database, 2018. [Online]. Available: https://www.epa.gov/agstar/livestockanaerobic- digester-database. [Accessed: 28-Aug-2018].

W. Moerman, M. Carballa, A. Vandekerckhove, D. Derycke, and W. Verstraete, “Phosphate removal in agro-industry: Pilot- and full-scale operational considerations of struvite crystallization,” Water Res., vol. 43, no. 7, Apr. 2009. pp. 1887–1892.

W. Tao, K. P. Fattah, and M. P. Huchzermeier, “Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances,” J. Environ. Manage., vol. 169, Mar. 2016. pp. 46–57.

S. Uludag-Demirer, G. N. Demirer, C. Frear, and S. Chen, “Anaerobic digestion of dairy manure with enhanced ammonia removal,” J. Environ. Manage., vol. 86, no. 1, Jan. 2008. pp. 193–200.

D. Cordell, A. Rosemarin, J. J. Schröder, and A. L. Smit, “Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options,” Chemosphere, vol. 84, no. 6, Aug. 2011. pp. 747–758.

D. Cordell, J.-O. Drangert, and S. White, “The story of phosphorus: Global food security and food for thought,” Glob. Environ. Chang., vol. 19, no. 2, May 2009. pp. 292–305.

X. Zhou et al., “Review of global sanitation development,” Environ. Int., vol. 120, Nov. 2018. pp. 246–261.

M. K. Jørgensen, J. H. Sørensen, C. A. Quist-Jensen, and M. L. Christensen, “Wastewater treatment and concentration of pho

Descargas

Publicado

March 1, 2019

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Detalles sobre esta monografía

Fecha de publicación (01)

2019