Índices de Capacidad Univariados. Aplicaciones en el área productiva

Autores/as

Roberto J. Herrera Acosta
Universidad del Atlántico

Palabras clave:

Índices de Capacidad

Sinopsis

El análisis de la capacidad de un proceso es una herramienta esencial en ingeniería para evaluar su desempeño de un producto con respecto a una(s) tolerancia(s) o especificación(es). Esta capacidad de proceso permite estimar las condiciones de calidad del producto, monitoreando históricamente o en línea la(s) variable(s) que permite identificar si un producto cumple o no los requisitos de calidad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

http://members.marticonet.sk/jkuba/normy/ASME_Geometry_Dimension%20and%20Tolerances_Handouts.pdf

Jeh-Nan Pan and, Chung-I Li. (2014). New capability indices for measuring the performance of a multidimensional machining process.

Kane V.E. (1986) Process capability indices. Journal of Quality Technology. 18:41–52.

Hsiang, T. C. y Taguchi, G. (1995). A tutorial on quality control and assurance the Taguchi methods. ASA Annual Meeting. Las Vegas, Nevada.

Chan LK, Cheng S.W y Spiring F.A. (1988). A new measure of process capability C_pm. Journal of Quality Technology 20(3):162–175.

Pearn WL, Kotz S y Johnson NL (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology 24(4):216–233.

Choi BC, Owen DB. (1990). A study of a new process capability index. Communications in Statistics: Theory and Methods; 19(4):1231–1245.

Boyles, R.A., (1994). Process capability with asymmetric tolerances. Communications in Statistics: Computation and Simulation, 23, pp. 615–643.

Chan, L.K., Cheng, S.W. and Spiring, F.A. (1988a). A new measure of process capability: C_pm. Journal of Quality Technology, Vol. 20 No. 3, pp. 162-75.

Gunter, B.H. (1989a). The use and abuse of Cpk, part 2. Quality Progress, Vol. 22 No. 3, pp. 108-9.

Gunter, B.H. (1989b). The use and abuse of Cpk, part 3. Quality Progress, Vol. 22 No. 5, pp. 79-80.

Somerville, S. & Montgomery, D. (1996). Process capability indices and non-normal distributions. Qual. Eng., 19(2): 305-316.

Chen, K.S. and Pearn, W.L. (1997). An application of non-normal process capability indices. Quality and Reliability Engineering International, Vol. 13, pp. 355-60.

Zwick, D. (1995). A hybrid method for fitting distributions to data and its use in computing process capability indices. Quality Engineering, Vol. 7 No. 3, pp. 601-13.

Schneider, H., Pruett, J. and Lagrange, C. (1995). Uses of process capability indices in the supplier certification process. Quality Engineering, Vol. 8 No. 2, pp. 225-35.

Pearn, W.L. and Chen, K.S. (1995). Estimating process capability indices for non-normal Pearsonian populations. Quality and Reliability Engineering International, Vol. 11 No. 5, pp. 386-8.

Chen, K.S. and Pearn, W.L. (1997). An application of non-normal process capability indices. Quality and Reliability Engineering International, Vol. 13, pp. 355-60.

Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18, 41–52.

Kotz, S., Pearn, W.L. and Johnson, N.L. (1993). Some process capability indices are more reliable than one might think. Journal of the Royal Statistical Society, Series C: Applied Statistics, Vol. 42 No.1, pp. 55-62.

Pearn, W.L. and Chen, K.S. (1996). A Bayesian-like estimator of Cpk. Communications in Statistics-Simulation and Computation. Vol. 25 No. 2, pp. 321-9.

Guevara, R.D. and Vargas, J.A. (2015). Process capability analysis for nonlinear profiles using depth functions. Quality and Reliability Engineering International, Vol. 31, No. 3, 465–487.

Pignatiello JJ, Ramberg J. (1993). Process capability indices: just say no. In Transactions of ASQC 47th Annual Quality Congress; 92–104.

Taam, W., Subbaiah, P. y Liddy, J. W. (1993). A note on multivariate capability indices. Journal of Applied Statistics, 20(3), pp. 339-351.

Shahriari, H., Hubele, N.F. y Lawrence, F.P. (1995). A multivariate process capability vector. In: Proceedings of the 4th Industrial Engineering Research Conference, vol. 1, pp. 304–309.

Boyles, R. A. (1997). Using the chi-square statistic to monitor compositional process data. Journal of Applied Statistics 24(5), 589–602.

Montgomery, Douglas C. (2004). Control estadístico de la calidad. Tercera Edición. México.

European Journal of Operational Research.Volume173, Issue 2, 1 September 2006, Pages 637-647.

Pearn WL, Kotz S, Johnson NL. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology; 24(4):216–231.

Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18, 41–52.

Chan, L.K., Cheng, S.W. and Spiring, F.A. (1988b), The robustness of the process capability index Cp to departures from normality. in Matusita, K. (Ed.), Statistical Theory and Data Analysis II, North Holland, Amsterdam, pp. 223-39.

Chen S.M. y Hsu NF (1995). The asymptotic distribution of the process capability index C_pmk. Communications in Statistics: Theory and Methods 24(5):1279–1291.

Wang, C.H. (2005). Constructing multivariate process capability indices for short-run production. Int. J. Adv. Manuf. Technol. 26, 1306–1311.

Taam, W., Subbaiah, P. y Liddy, J. W. (1993). A note on multivariate capability indices. Journal of Applied Statistics, 20(3), pp. 339-351.

Chen, H. (1994). A multivariate process capability index over a rectangular solid zone. Statistica Sinica. 4, 749–758.

Shahriari, H., Hubele, N.F. y Lawrence, F.P. (1995). A multivariate process capability vector. In: Proceedings of the 4th Industrial Engineering Research Conference, vol. 1, pp. 304–309.

Taam, W., Subbaiah, P. y Liddy, J. W. (1993). A note on multivariate capability indices. Journal of Applied Statistics, 20(3), pp. 339-351.

Shahriari, H., Hubele, N.F. y Lawrence, F.P. (1995). A multivariate process capability vector. In: Proceedings of the 4th Industrial Engineering Research Conference, vol. 1, pp. 304–309.

Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18, 41–52.

Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18, 41–52.

Chan, L.K., Cheng, S.W. and Spiring, F.A. (1988a). A new measure of process capability: C_pm. Journal of Quality Technology, Vol. 20 No. 3, pp. 162-75.

Shinde R.L y Khadse K.G. (2009). Multivariate process capability using principal component analysis. John Wiley & Sons, Ltd. Quality and Reliability Engineering International. Volume 25, Issue 1, pages 69–77.

Juran JM. (1974). Juran’s Quality Control Handbook. McGraw-Hill, 3rd edition.

Chan, L.K., Cheng, S.W. and Spiring, F.A. (1988a). A new measure of process capability: Cpm. Journal of Quality Technology, Vol. 20 No. 3, pp. 162-75.

Chan, L.K., Cheng, S.W. and Spiring, F.A. (1988b). The robustness of the process capability index Cp to departures from normality. in Matusita, K. (Ed.), Statistical Theory and Data Analysis II, North Holland, Amsterdam, pp. 223-39.

Pearn WL, Kotz S y Johnson NL (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology 24(4):216–233.

Pearn, W. L., Lin, G. H., & Chen, K. S. (1998). Distributional and inferential properties of process accuracy and process precision indices. Communications in Statistics–Theory and Methods, 27, 985–1000. Pearn (2003).

Lin, G. H., & Pearn, W. L. (2003). Distributions of the estimated process capability index Cpk. Economic Quality Control, 18, 263–279.

Vargas A. (2007). Control Estadístico de la Calidad. Universidad del Nacional de Colombia. Bogotá. Unibiblos.

Chan, L.K., Cheng, S.W. and Spiring, F.A. (1988b). The robustness of the process capability index Cp to departures from normality. in Matusita, K. (Ed.), Statistical Theory and Data Analysis II, North Holland, Amsterdam, pp. 223-39.

Gunter, B.H. (1989a). The use and abuse of Cpk, part 2. Quality Progress, Vol. 22 No. 3, pp. 108-9.

Gunter, B.H. (1989b). The use and abuse of Cpk, part 3. Quality Progress, Vol. 22 No. 5, pp. 79-80.

Somerville, S. & Montgomery, D. (1996). Process capability indices and non-normal distributions. Qual. Eng., 19(2): 305-316.

Chen, K.S. and Pearn, W.L. (1997). An application of non-normal process capability indices. Quality and Reliability Engineering International, Vol. 13, pp. 355-60.

Zwick, D. (1995). A hybrid method for fitting distributions to data and its use in computing process capability indices. Quality Engineering, Vol. 7 No. 3, pp. 601-13.

Pearn, W.L. and Chen, K.S. (1995). Estimating process capability indices for non-normal Pearsonian populations. Quality and Reliability Engineering International, Vol. 11 No. 5, pp. 386-8.

Chen, K.S. and Pearn, W.L. (1997). An application of non-normal process capability indices. Quality and Reliability Engineering International, Vol. 13, pp. 355-60.

Tong, L.I. and Chen, J.P. (1998). Lower confidence limits of process capability indices for nonnormal process distributions. International Journal of Quality & Reliability Management, Vol. 15 No. 8/9, pp. 907-19.

Clements, J.A. (1989). Process capability calculations for non-normal distributions. Quality Progress. September, pp. 95-100.

Vännman K. (1995). A unified approach to capability indices. Statistica Sinica; 5:805–820.

Chen, K.S. and Pearn, W.L. (1997). An application of non-normal process capability indices. Quality and Reliability Engineering International, Vol. 13, pp. 355-60.

Tong, L.I. and Chen, J.P. (1998). Lower confidence limits of process capability indices for nonnormal process distributions. International Journal of Quality & Reliability Management, Vol. 15 No. 8/9, pp. 907-19.

Jann-Pygn Chen, Cherng G. Ding (2000). A new process capability index for non-normal distributions. International Journal of Quality & Reliability Management, Vol. 18 No. 7, pp. 762-72.

Chen, J.P. (2000). Reevaluating the process capability indices for non-normal distributions. International Journal of Production Research, Vol. 38 No. 6, pp. 1311-24.

Pearn, W.L. and Chen, K.S. (1995). Estimating process capability indices for non-normal Pearsonian populations. Quality and Reliability Engineering International, Vol. 11 No. 5, pp. 386-8.

Ramsay J.O, Silverman B.W., (1997). Functional data analysis. Springer.

Ramsay J.O, Silverman B.W., (1997). Functional data analysis. Springer.

Ramsay, J. O. and Silverman, B. (2005). Functional Data Analysis. New York.

Ramsay y Dalzell (1991). Some tools for functional data analysis. Journal Royal Statistical Society, 53:539{572.

Liu, P. & Chen, F., (2006). Process Capability Analysis on Non-normal Process Data Using the Burr XII Distribution. The International Journal of Advanced Manufacturing Technology, 27; 975-984.

López-Pintado S, Romo J. (2009). On the concept of depth for functional data. Journal of the American Statistical Association; 104(486):718–734.

López-Pintado S, Romo J. (2011). A half-region depth for functional data. Computational Statistics and Data Analysis. 55:1679–1695.

Sun Y., Genton M.G. (2011). Functional boxplots. Journal of computational and graphical statistics; 20:316–334.

Clements, J.A. (1989). Process capability calculations for non-normal distributions. Quality Progress. September, pp. 95-100.

López-Pintado S, Romo J. (2009). On the concept of depth for functional data. Journal of the American Statistical Association; 104(486):718–734.

Vargas, A. y Guevara R. (2011). Process Capability Analysis Plot for a Product with Bilateral Specifications. Revista Colombiana de Estadística. Junio 2011, volumen 34, no. 2, pp. 287 a 301.

Shinde R.L y Khadse K.G. (2009). Multivariate process capability using principal component analysis. John Wiley & Sons, Ltd. Quality and Reliability Engineering International. Volume 25, Issue 1, pages 69–77.

Taam, W., Subbaiah, P. y Liddy, J. W. (1993). A note on multivariate capability indices. Journal of Applied Statistics, 20(3), pp. 339-351.

Taam, W., Subbaiah, P. y Liddy, J. W. (1993). A note on multivariate capability indices. Journal of Applied Statistics, 20(3), pp. 339-351.

Castagliola P, Maravelakis P, Psarakis S. y Vännman K. (2009). Monitoring capability indices using run rules. Journal of Quality in Maintenance. Engineering. 15(4):358–370.

Bothe, D.(1991). A Capability study for an entire product. ASQC Quality Control Transations.

Wierda, S.J. (1994). Multivariate statistical process control - recent results and directions for future research. Statistica Neerlandica, vol 48 (2) 147-168.

Wang F.K. y Chen. J. (1998). Capability index using principal component analisys. Quality Engineering.

Chan, L.K., Cheng, S.W. and Spiring, F.A. (1988b). The robustness of the process capability index Cp to departures from normality. in Matusita, K. (Ed.), Statistical Theory and Data Analysis II, North Holland, Amsterdam, pp. 223-39.

Shahriari, H. y Abdollahzadeh, M. (2009). A new multivariate process capability vector. Quality Engineering, 21, 290-299.

Cumea G. (2013). Índices de Capacidad Multivariados. Congreso internacional de arquitectura e ingeniería sostenible 2013. México.

Clements, J.A. (1989). Process capability calculations for non-normal distributions. Quality Progress. September, pp. 95-100.

Bothe, D.(1991). A Capability study for an entire product. ASQC Quality Control Transations.

Krishnamoorthi, K. S. (1990). Capability indices for processes subject to unilateral and positional tolerances. Quality Engineering, 2, 461–471.

Davis, R. D., Kaminsky, F. C., & Saboo, S. (1992). Process capability analysis for process with either a circular or a spherical tolerance zone. Quality Engineering, 5, 41–54.

Karl, D. P., Morisette, J., & Taam, W. (1994). Some applications of a multivariate capability index in geometric dimensioning and tolerancing. Quality Engineering, 6, 649–665.

Chen K.S, W. Pearn L. and Lin P.C., (2003). Capability Measures for Processes with Multiple Characteristics. Quality and Reliability Engineering International Qual. Reliab. Engng. Int.; 19:101–110 (DOI: 10.1002/qre.513).

Chen K.S, W. Pearn L. and Lin P.C., (2003). Capability Measures for Processes with Multiple Characteristics. Quality and Reliability Engineering International Qual. Reliab. Engng. Int. 2003; 19:101–110 (DOI: 10.1002/qre.513).

Bothe, D. R. (2006). Assessing capability for hole location. Quality Engineering, 18,325–331.

Shahriari, H. y Abdollahzadeh, M. (2009). A new multivariate process capability vector. Quality Engineering, 21, 290-299.

Shahriari, H. y Abdollahzadeh, M. (2009). A new multivariate process capability vector. Quality Engineering, 21, 290-299.

Ebadi M, Shahriari H., (2012). A process capability index for simple linear profile. International Journal of Advanced Manufacturing Technology; doi:10.1007/s00170-012-4066-7.

Ebadi M, Shahriari H., (2012). A process capability index for simple linear profile. International Journal of Advanced Manufacturing Technology; doi:10.1007/s00170-012-4066-7.

Ebadi M, Shahriari H., (2012). A process capability index for simple linear profile. International Journal of Advanced Manufacturing Technology; doi:10.1007/s00170-012-4066-7.

Ebadi M, Shahriari H., (2012). A process capability index for simple linear profile. International Journal of Advanced Manufacturing Technology; doi:10.1007/s00170-012-4066-7.

Noorossana, R., Saghaie, A. and Amiri, A. (2011) Statistical Analysis of Prole Monitoring, John Wiley and Sons.

Shahriari, H. y Sarafian, M. (2009). Evaluación del proceso - Evaluación capacidad en perfiles lineas, Internacional de Ingeniería Industrial Conferencia, Teherán, Irán.

Ebadi, M. y Shahriari, H. (2012). La capacidad de proceso índice para perfiles lineal simple. La Revista Internacional de Manufactura Avanzada y Tecnología,64 ( 5- 8), pp. 857-865.

I. W. Burr, (1973). Parameters for a general system of distribution to match a grid of ?3 a ?4. Commun Stat. 2:1, 1-21.

R. Nemati Keshtelia, R. Baradaran Kazemzadeha, A. Amiri and R. Noorossana. (2014). Developing functional process capability índices for simple linear profile. Scientia Iranica, Sharif University of Technology.

Descargas

Publicado

febrero 4, 2021

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Detalles sobre esta monografía

ISBN-13 (15)

978-958-5173-25-5

Fecha de publicación (01)

2020-12-30
Calendario musulmán